(11) was the major component of the eluate. After 124 h (fraction
19, Fig. 4), the CDAA (11) appeared to have completely eluted by
TLC analysis. At this point the reflux was stopped and the column
was allowed to drain under gravity and then flushed with 3 L of
acetone. Interestingly, the acetone washes (fractions 19–22, Fig. 4)
contained significant quantities of the CDAA spiroketal (11). After
combination of fractions and evaporation ofsolvent, three samples
were obtained: 11.40 g 6, 3.74 g 26 : 58 : 16 6 : 7 : 11, 10.12 g 11 (a,
b and c in Fig. 4). This corresponds to a 93% reaction yield and a
92% separation of ABAA (6). The total amount of solvent used was
17 L. Using the measured flow rate of 80 mL min−1, the amount of
solvent required to run the same column in the traditional manner
is estimated to be in excess of 590 L. Thus, the requisite volume
of solvent has been significantly reduced, by a factor of around
35. Not only does this signify a considerable reduction in cost,
but it also represents a substantial lessening of the environmental
impact of the process. Furthermore, as our solvent system is an
azeotropic mixture, it has the same composition after distillation
and can be collected from the rotary evaporator after product
isolation to be reused in subsequent separations. This idea is
currently being employed as we continue our scale-up synthesis of
spongistatin 1 (1).
(DSH) and the Cambridge European Trust for a partially funded
studentship (HK).
Notes and references
1 M. S. Tswett, Ber. Dtsch. Bot. Ges., 1906, 24, 316, 384.
2 The following paper greatly contributed to this popularity: W. C. Still,
M. Kahn and A. Mitra, J. Org. Chem., 1978, 43, 2923.
3 G. R. Pettit, Z. A. Cichacz, F. Gao, C. L. Herald, M. R. Boyd, J. M.
Schmidt and J. N. A. Hooper, J. Org. Chem., 1993, 58, 1302; M.
Kobayashi, S. Aoki, H. Sakai, K. Kawazoe, N. Kihara, T. Sasaki and I.
Kitagawa, Tetrahedron Lett., 1993, 34, 2795; N. Fusetani, K. Shinoda
and S. Matsunaga, J. Am. Chem. Soc., 1993, 115, 3977; R. Bai, Z. A.
Cichacz, C. L. Herald, G. R. Pettit and E. Hamel, Mol. Pharmacol.,
1993, 44, 757; R. Bai, G. F. Taylor, Z. A. Chicacz, C. L. Herald, J. A.
Keplar, G. R. Pettit and E. Hamel, Biochemistry, 1995, 34, 9714.
4 (a) D. A. Evans, B. W. Trotter, B. Coˆte´, P. J. Coleman, L. C. Dias and
A. N. Tyler, Angew. Chem., 1997, 109, 2957, (Angew. Chem., Int. Ed.
Engl., 1997, 36, 2744); D. A. Evans, B. W. Trotter, P. J. Coleman, B.
Coˆte´, L. C. Dias, H. A. Rajapaske and A. N. Tyler, Tetrahedron, 1999,
55, 8671; (b) M. M. Hayward, R. M. Roth, K. J. Duffy, P. I. Dalko,
K. L. Stevens, J. Guo and Y. Kishi, Angew. Chem., 1998, 110, 202,
(Angew. Chem., Int. Ed., 1998, 37, 190); (c) A. B. Smith III, Q. Lin,
V. A. Doughty, L. Zhuang, M. D. McBriar, J. K. Kerns, C. S. Brook,
N. Murase and K. Nakayama, Angew. Chem., 2001, 113, 202, (Angew.
Chem., Int. Ed., 2001, 40, 196); (d) I. Paterson, D. Y.-K. Chen, M. J.
Coster, J. L. Acena, J. Bach and D. J. Wallace, Org. Biomol. Chem.,
2005, 3, 2431; I. Paterson, D. Y.-K. Chen, M. J. Coster, J. L. Acena, J.
Bach, K. R. Gibson, L. E. Keown, R. M. Oballa, T. Trieselmann, D. J.
Wallace, A. P. Hodgson and R. D. Norcross, Angew. Chem., 2001, 113,
4179, (Angew. Chem., Int. Ed., 2001, 40, 4055); (e) M. T. Crimmins, J. D.
Katz, D. G. Washburn, S. P. Allwein and L. F. McAtee, J. Am. Chem.
Soc., 2002, 124, 5661; (f) C. H. Heathcock, M. McLaughlin, J. Medina,
J. L. Hubbs, G. A. Wallace, R. Scott, M. M. Claffey, C. J. Hayes and
G. R. Ott, J. Am. Chem. Soc., 2003, 125, 12844 and references therein.
5 M. Ball, M. J. Gaunt, D. F. Hook, A. S. Jessiman, S. Kawahara, P.
Orsini, A. Scolaro, A. C. Talbot, H. R. Tanner, S. Yamanoi and S. V.
Ley, Angew. Chem., Int. Ed., 2005, 44, 5433.
Conclusion
Our route to spongistatin 1 (1) exploits the high level of C2
pseudosymmetry present in the ABCD fragment 2, and relies
on the ability to separate the ABAA fragment 6 from the CD
fragments 7 and 11. We have developed a novel system which
is cost-effective and uses a very simple apparatus to continu-
ously recycle the azeotropic solvent mixture. The method allows
for a dramatic reduction in the amount of solvent required,
uses no expensive equipment and is easy to construct and
operate.
6 M. J. Gaunt, D. F. Hook, H. R. Tanner and S. V. Ley, Org. Lett., 2003,
5, 4815; M. J. Gaunt, A. S. Jessiman, P. Orsini, H. R. Tanner, D. F.
Hook and S. V. Ley, Org. Lett., 2003, 5, 4819.
7 For examples see: R. Meier and J. Fletschinger, Angew. Chem., 1956,
68, 373; M. J. S. Dewar, R. B. K. Dewar and Z. L. F. Gaibel, Org. Synth.
Coll. Vol. 5, 1973, 727, (Org. Synth., 1966, 46, 65); J. M. Kauffman and
C. O. Byorkman, J. Chem. Educ., 1976, 53, 33; K. Chatterjee, D. H.
Parker, P. Wurz, K. R. Lykke, D. M. Gruen and L. M. Stock, J. Org.
Chem., 1992, 57, 3253; K. C. Khemani, M. Prato and F. Wudl, J. Org.
Chem., 1992, 57, 3254.
We suggest that this little-used technique could have a much
broader application in organic synthesis programmes in the
future.
Acknowledgements
8 Azeotropic Data III, ed. L. H. Horsley, American Chemical Society,
Washington, 1973 and references therein (from NMR analysis of
distillates in our apparatus, the azeotrope composition seemed to lie
between 50 : 50 and 53 : 47 diethyl ether–pentane).
The authors thank Melvyn Orris and Keith Parmenter for helpful
technical discussions. We also thank the Ministerio de Educacio´n
y Ciencia (Spain) for a postdoctoral fellowship (ADV), the
Taiwan Merit Scholarship Program for a postdoctoral fellowship
9 CRC handbook of laboratory safety, ed. A. K. Furr, CRC Press,
Cleveland, 5th edn, 2002, p. 255 and references therein.
10 Glassware was made by Soham Scientific, Munceyꢀs Mill, 37 Mildenhall
Road, Fordham, Ely, Cambridgeshire, CB7 5NP, UK.
1164 | Org. Biomol. Chem., 2008, 6, 1159–1164
This journal is
The Royal Society of Chemistry 2008
©