C O M M U N I C A T I O N S
Table 1. Propylene Polymerization Data for rac-1/Methylaluminoxanea
c
f
f
Trxn
C)
propylene
(g)
time
(h)
yield
(mg)
TOFb
Mn
Tg
C)
Tm
C)
1
c
entry
(
°
(h-
)
(g/mol)
Mw/Mn
[CH3]/[CH2]d
% 3,1e
(
°
(
°
1
2
3
4
5
6
22
0
-20
-40
-60
-78
5
5
5
5
15
15
1.0
2.0
6.0
24
48
96
690
550
445
280
110
73
966
385
104
16
3
57 100
48 200
31 500
19 400
9 000
1.11
1.08
1.09
1.10
1.34
1.37
0.21
0.31
0.48
0.67
0.80
1.00
56.2
43.1
26.8
13.9
7.6
-59.9
-54.4
-43.0
-27.0
-14.3
-0.5
NDg
NDg
NDg
68.8
129.7
137.3
1
5 700
0.0
a Polymerization conditions: toluene ) 25 mL, Ni ) 17 µmol, [Al]/[Ni] ) 270. b TOF (turnover frequency): mol propylene/(mol Ni‚h). c Determined
using gel-permeation chromatography in 1,2,4-C6H3Cl3 at 140 °C versus polyethylene standards. d Determined by 1H NMR. e Determined by the equation:
% 3,1-insertions ) [(1 - R)/(1 + 2R)] × 100, where R ) [CH3]/[CH2]. f Determined by differential scanning calorimetry (second heating). g None detected.
copolymers with multiple blocks of defined size and microstructure
from a single alkene. Future work will focus on the application of
this system for the synthesis of model iso-PP block copolymers,
as well as the development of systems with higher activity.
Acknowledgment. G.W.C. gratefully acknowledges support
from the Packard and Sloan Foundations, and Mitsubishi Chemicals.
This material is based upon work supported in part by the U.S.
Army Research Laboratory and the U.S. Army Research Office
under Grant No. DAAD19-02-1-0275, Macromolecular Architecture
for Performance (MAP) MURI. This research made use of the
Cornell Center for Materials Research Shared Experimental Facili-
ties supported through the NSF MRSEC program (DMR-0079992).
Supporting Information Available: Catalyst synthesis and char-
acterization, X-ray data for rac-1, propylene polymerization data, and
polymer characterization. This material is available free of charge via
Figure 2. 13C NMR spectrum (1,1,2,2-C2D2Cl4, 125 MHz, 135 °C) of iso-
PP formed by rac-1/MAO at -78 °C (Table 1, entry 6).
opportunity for the synthesis of propylene homopolymers with
blocks of controlled sequence length and composition. Polypropy-
lene block copolymers are primarily made using four techniques.
First, catalysts with dynamic active sites can produce isotactic/
atactic stereoblock polypropylenes.9 Second, the sequential polym-
erization of propylene with other alkenes using living catalysts
produces isotactic and syndiotactic polypropylene block copoly-
mers.2 Third, chain exchange between catalysts of different ste-
reospecificities can be used for block copolymer synthesis.10 Fourth,
changing the solvent during a living propylene polymerization can
produce stereoblock polymers.11 We chose to investigate the simple
change of Trxn during chain growth as a straightforward technique
to give polymers with blocks that are well-defined in number, size,
and composition. Propylene was polymerized at -60 °C for 7 h to
give an iso-PP block with Mn ) 5 400 g/mol, Mw/Mn ) 1.24.
Warming to 0 °C for 1 h gave a diblock polymer (iso-PP-block-
rir-PP) with Mn ) 47 400 g/mol, Mw/Mn ) 1.12. Thermal analysis
of the diblock polymer by DSC showed characteristics of each of
the homopolymers, with Tg ) -44.5 °C and Tm ) 118.6 °C.
Polymerization at Trxn) -60, 0, then -60 °C gave a triblock
copolymer with elastomeric properties.
References
(1) (a) Resconi, L.; Cavallo, L.; Fait, A.; Piemontesi, F. Chem. ReV. 2000,
100, 1253-1345. (b) Coates, G. W. Chem. ReV. 2000, 100, 1223-1252.
(2) (a) Coates, G. W.; Hustad, P. D.; Reinartz, S. Angew. Chem., Int. Ed.
2002, 41, 2236-2257. (b) Mason, A. F.; Coates, G. W. J. Am. Chem.
Soc. 2004, 126, 16326-16327. (c) Busico, V.; Cipullo, R.; Friederichs,
N.; Ronca, S.; Talarico, G.; Togrou, M.; Wang, B. Macromolecules 2004,
37, 8201-8203.
(3) Ittel, S. D.; Johnson, L. K.; Brookhart, M. Chem. ReV. 2000, 100, 1169-
1203.
(4) (a) Johnson, L. K.; Killian, C. M.; Brookhart, M. J. Am. Chem. Soc. 1995,
117, 6414-6415. (b) Killian, C. M.; Tempel, D. J.; Johnson, L. K.;
Brookhart, M. J. Am. Chem. Soc. 1996, 118, 11664-11665. (c) Johnson,
L. K.; Mecking, S.; Brookhart, M. J. Am. Chem. Soc. 1996, 118, 267-
268.
(5) For partially isotactic PP ([mm] ) 0.41) using an R-diimine Ni(II) system,
see: Pappalardo, D.; Mazzeo, M.; Antinucci, S.; Pellecchia, C. Macro-
molecules 2000, 33, 9483-9487.
(6) (a) Guan, Z.; Cotts, P. M.; McCord, E. F.; McLain, S. J. Science 1999,
283, 2059-2062. (b) McCord, E. F.; McLain, S. J.; Nelson, L. T. J.;
Arthur, S. D.; Coughlin, E. B.; Ittel, S. D.; Johnson, L. K.; Tempel, D.;
Killian, C. M.; Brookhart, M. Macromolecules 2001, 34, 362-371. (c)
Galland, G. B.; Da Silva, L. P.; Dias, M. L.; Crossetti, G. L.; Ziglio, C.
M.; Filgueiras, C. A. L. J. Polym. Sci., Part A: Polym. Chem. 2004, 42,
2171-2178.
(7) Pellecchia, C.; Zambelli, A. Macromol. Rapid Commun. 1996, 17, 333-
338.
(8) Cherian, A. E.; Lobkovsky, E. B.; Coates, G. W. Chem. Commun. 2003,
2566-2567.
(9) Coates, G. W.; Waymouth, R. M. Science 1995, 267, 217-219.
(10) (a) Lieber, S.; Brintzinger, H. H. Macromolecules 2000, 33, 9192-9199.
(b) Zhang, Y.; Keaton, R. J.; Sita, L. R. J. Am. Chem. Soc. 2003, 125,
9062-9069 and references therein.
In conclusion, we report a new chiral, living Ni(II) complex
which produces polypropylenes with microstructures ranging from
highly isotactic at low Trxn to regiorandom at high Trxn. By changing
Trxn during propylene polymerization, regioblock copolymers can
be synthesized. This represents a new strategy for the synthesis of
(11) Nishii, K.; Shiono, T.; Ikeda, T. Macromol. Rapid Commun. 2004, 25,
1029-1032.
JA0540021
9
J. AM. CHEM. SOC. VOL. 127, NO. 40, 2005 13771