7158
H. Kinoshita et al. / Tetrahedron Letters 46 (2005) 7155–7158
Watanabe, S.; Kataoka, T.; Muraoka, O.; Tanabe, G.
3H; Me of –CHMe2), 1.02 (d, J = 6.8 Hz, 3H; Me of
–CHMe2), 1.04 (s, 3H; 5-Me), 1.44 (s, 3H; 5-Me), 2.05–
2.12 (m, 1H; –CHMe2), 2.37 (d, J = 9.6 Hz, 1H; SH), 2.96
(s, 3H; OMe), 4.10 (d, J = 2.0 Hz, 1H; 4-H), 4.15
(d, J = 7.5 Hz, 1H; –CHOMe), 4.21 (t, J = 9.6 Hz, 1H;
–CHSH), 5.37 (dd, J = 7.5 and 9.6 Hz, 1H; 20-H), 7.14–
7.31 (m, 9H; ArH); 13C NMR (100 MHz; CDCl3) d = 16.5
(q), 21.2 (q), 21.5 (q), 27.7 (q), 29.9 (d), 43.6 (d), 55.1 (d),
56.7 (d), 66.9 (d), 82.4 (s), 83.4 (d), 127.2 (d), 127.6 (d),
128.5 (d), 129.0 (d), 133.7 (s), 137.1 (s), 141.8 (s), 153.9 (s),
172.6 (s). A methyl carbon and four aromatic carbons are
overlapped; IR (KBr): m = 2976 (SH), 1771 (C@O),
1693 cmÀ1 (C@O); MS (FAB; NBA) m/z (%): 476 (18)
[M++H], 154 (100); elemental analysis calcd (%) for
C25H30ClNO4S (476.03): C, 63.08; H, 6.35; N, 2.94.
Found: C, 62.87; H, 6.28; N, 2.89.
J. Org. Chem. 2003, 68, 7532–7534; (e) Walsh, L. M.;
Winn, C. L.; Goodman, J. M. Tetrahedron Lett. 2002, 43,
8219–8222.
3. You, J.; Xu, J.; Verkade, J. G. Angew. Chem., Int. Ed.
2003, 42, 5054–5056.
4. (a) Kataoka, T.; Iwama, T.; Tsujiyama, S. Chem. Com-
mun. 1998, 197–198; (b) Kataoka, T.; Iwama, T.; Tsujiy-
ama, S.; Iwamura, T.; Watanabe, S. Tetrahedron 1998, 54,
11813–11824; (c) Kataoka, T.; Kinoshita, H.; Iwama, T.;
Tsujiyama, S.; Iwamura, T.; Watanabe, S.; Muraoka, O.;
Tanabe, G. Tetrahedron 2000, 56, 4725–4731; (d) Kat-
aoka, T.; Iwama, T.; Kinoshita, H.; Tsujiyama, S.;
Tsurukami, Y.; Iwamura, T.; Watanabe, S. Synlett 1999,
197–198; (e) Kataoka, T.; Iwama, T.; Kinoshita, H.;
Tsurukami, Y.; Tsujiyama, S.; Fujita, M.; Honda, E.;
Iwamura, T.; Watanabe, S. J. Organomet. Chem. 2000,
611, 455–462; (f) Kataoka, T.; Kinoshita, H.; Kinoshita,
S.; Iwamura, T.; Watanabe, S. Angew. Chem., Int. Ed.
2000, 39, 2358–2360; (g) Kinoshita, S.; Kinoshita, H.;
Iwamura, T.; Watanabe, S.; Kataoka, T. Chem. Eur. J.
2003, 9, 1496–1502; (h) Kataoka, T.; Kinoshita, H. Eur. J.
Org. Chem. 2005, 45–58.
5. For TiCl4-mediated reactions: (a) Li, G.; Hook, J. D.;
Wei, H. X. Recent Res. Devel. Org. Bioorg. Chem. 2001, 4,
49–61; (b) Karur, S.; Hardin, J.; Headley, A.; Li, G.
Tetrahedron Lett. 2003, 44, 2991–2994; For TiCl4–ammo-
nium salt-mediated reactions: (c) Taniguchi, M.; Hino, T.;
Kishi, Y. Tetrahedron Lett. 1986, 27, 4767–4770; (d)
Uehira, S.; Han, Z.; Shinokubo, H.; Oshima, K. Org. Lett.
1999, 1, 1383–1385; (e) Han, Z.; Uehira, S.; Shinokubo,
H.; Oshima, K. J. Org. Chem. 2001, 66, 7854–7857; (f)
Yagi, K.; Turitani, T.; Shinokubo, H.; Oshima, K. Org.
Lett. 2002, 4, 3111–3114.
8. Crystal structure data for 8: C50H60N2O8S2, Mr = 881.15,
orthorhombic, space group: P212121, a = 20.404(4),
3
˚
˚
b = 23.153(3), c = 11.679(3) A, V = 5517(1) A , T =
296.2 K, Z = 4, Dcalcd = 1.061 g/cm3, l(MoKa) = 1.43
cmÀ1, R = 0.243, Rw = 0.288. CCDC-229571 contains
the supplementary crystallographic data for this letter.
These data can be obtained free of charge via www.
Cambridge Crystallographic Data center, 12, Union
Road, Cambridge CB21EZ, UK; fax: (+44)1223-336-
033; or deposit@ccdc.cam.au.uk).
9. Typical procedure for the transformation of 3 into 9 and
10: To a stirred solution of 2-(a-methoxybenzyl)-3-sulfa-
nylamide (3a) (178 mg, 0.4 mmol) in dry THF (3.2 mL)
was added LiAlH4 (16 mg, 0.4 mmol) at 0 ꢁC. The mixture
was stirred at room temperature for 30 min and then
quenched by the addition of aqueous NH4Cl. The aqueous
layer was extracted with AcOEt (5 mL · 3). The extract
was washed with saturated aqueous NaCl, dried (MgSO4),
and concentrated under reduced pressure. The residue was
purified by PTLC (hexane/AcOEt/i-PrOH = 30:10:1, v/v)
to give 9a as a colorless oil and 10 as a yellow solid.
6. Kataoka, T.; Kinoshita, H.; Kinoshita, S.; Osamura, T.;
Watanabe, S.; Iwamura, T.; Muraoka, O.; Tanabe, G.
Angew. Chem., Int. Ed. 2003, 42, 2889–2891.
7. Typical procedure for the synthesis of 3: To a stirred
solution of N-cinnamoyl-4S-isopropyl-5,5-dimethyloxaz-
olidinethione (1) (152 mg, 0.5 mmol) and p-chlorobenzal-
dehyde dimethyl acetal (2b) (187 mg, 1.0 mmol) in dry
CH2Cl2 (1.6 mL) was added dropwise a solution of SnCl4
(176 lL, 1.5 mmol) at À40 ꢁC. The mixture was stirred at
the same temperature for 24 h and then quenched by the
addition of saturated aqueous NaHCO3 (2 mL). The
resulting solution was allowed to warm to room temper-
ature and was stirred until the solution became clear. The
aqueous layer was extracted with CH2Cl2 (5 mL · 2) and
the combined organic layers were washed with brine. The
extract was dried (MgSO4) and evaporated under reduced
pressure. The residue was purified by recycling preparative
HPLC, eluting with chloroform to give 3b as a white
24
Compound 9a: Colorless oil; ½aꢀD À117.1 (c 1.0, CHCl3);
1H NMR (400 MHz; CDCl3; TMS) d = 2.02–2.04 (m, 1H;
2-H), 2.11 (d, J = 5.9 Hz, 1H; SH), 3.05–3.07 (m, 1H;
OH), 3.10 (s, 3H; OMe), 3.83–3.86 (m, 1H; CH2), 3.94–
3.99 (m, 1H; CH2), 4.16 (d, J = 3.4 Hz, 1H; –CHOMe),
4.49 (dd, J = 5.9 and 9.8 Hz, 1H; –CHSH), 7.15
(d, J = 6.8 Hz, 2H; ArH), 7.25–7.40 (m, 8H; ArH); 13C
NMR (100 MHz; CDCl3) d = 42.4 (d), 54.1 (d), 57.7 (q),
59.6 (t), 84.8 (d), 126.0 (d), 127.4 (d), 127.5 (d), 127.6 (d),
128.5 (d), 128.9 (d), 136.7 (s), 143.3 (s). Four aromatic
carbons are overlapped; IR (NaCl) m = 3524 (OH),
2560 cmÀ1 (SH); MS (FAB; Gly) m/z (%): 289 (3)
[M++H], 121 (100); HRMS (FAB, Gly); calcd for
C17H20O2S [M++H]: 289.1184; found: 289.1252.
23
1
powder. Mp 47.5–50.0 ꢁC; ½aꢀD +29.9 (c 1.0, CHCl3); H
10. Palomo, C.; Oiarbide, M.; Dias, F.; Ortiz, A.; Linden, A.
J. Am. Chem. Soc. 2001, 123, 5602–5603.
NMR (400 MHz; CDCl3; TMS) d = 0.85 (d, J = 6.8 Hz,