1558
L. Zhou et al. / Bioorg. Med. Chem. Lett. 18 (2008) 1555–1558
1.46–2.02 (m, 20H), 2.06 (d, J = 6.8 Hz, 2H), 2.29 (s, 3H),
Acknowledgment
3.19 (d, J = 5.8 Hz, 2H), 4.47 (s, 1H), 7.12 (d, J = 7.8 Hz,
2H), 7.49 (d, J = 7.8 Hz, 2H), 7.71 (br s, 3H), 8.04 (t,
J = 6.0 Hz, 1H); 13C NMR (125.7 MHz, DMSO-d6) d
20.95, 23.49, 28.24, 29.69, 32.70, 33.35, 33.53, 37.80, 41.90,
41.97, 44.44, 46.03, 54.53, 65.49, 108.69, 110.08, 125.66,
128.24, 137.84, 145.80, 172.51. Anal. Calcd for
C29H44N2O8S: C, 59.98; H, 7.64; N, 4.82. Found: C,
59.71; H, 7.48; N, 5.02.
This investigation received financial support from the
Medicines for Malaria Venture (MMV).
References and notes
1. Klayman, D. L. Science 1985, 228, 1049.
2. O’Neill, P. M.; Posner, G. H. J. Med. Chem. 2004, 47,
2945.
3. Jefford, C. W. Drug Discovery Today 2007, 12, 487.
4. Tang, Y.; Dong, Y.; Vennerstrom, J. L. Med. Res. Rev.
2004, 24, 425.
5. Vennerstrom, J. L.; Arbe-Barnes, S.; Brun, R.; Charman,
S. A.; Chiu, F. C. K.; Chollet, J.; Dong, Y.; Dorn, A.;
Hunziker, D.; Matile, H.; McIntosh, K.; Padmanilayam,
M.; Santo Tomas, J.; Scheurer, C.; Scorneaux, B.; Tang,
Y.; Urwyler, H.; Wittlin, S.; Charman, W. N. Nature 2004,
430, 900.
6. Kaiser, M.; Wittlin, S.; Nehrbass-Stuedli, A.; Dong, Y.;
Wang, X.; Hemphill, A.; Matile, H.; Brun, R.; Venner-
strom, J. L. Antimicrob. Agents Chemother. 2007, 51,
2991.
11. Griesbaum, K.; Liu, X.; Kassiaris, A.; Scherer, M. Libigs
Ann./Recueil 1997, 1381.
12. Griesbaum, K. Trends Org. Chem. 1997, 6, 145.
13. Although the mechanism of the Griesbaum coozonolysis
is not completely understood, the facial selectivity in
reactions of the putative enantiomeric carbonyl oxide
intermediates parallels the facial selectivity in reactions of
5-substituted 2-adamantyl derivatives. This requires con-
sideration of both electrostatic and hyperconjugative
effects, as, for example, discussed and debated in the
following reviews: (a) Adcock, W.; Trout, N. A. Chem.
Rev. 1999, 99, 1415; (b) Gung, B. W. Chem. Rev. 1999, 99,
1377.
14. Tang, Y.; Dong, Y.; Karle, J. M.; DiTusa, C. A.;
Vennerstrom, J. L. J. Org. Chem. 2004, 69, 6470.
15. Dong, Y.; Chollet, J.; Matile, H.; Charman, S. A.; Chiu,
F. C. K.; Charman, W. N.; Scorneaux, B.; Urwyler, H.;
Santo Tomas, J.; Scheurer, C.; Snyder, C.; Dorn, A.;
Wang, X.; Karle, J. M.; Tang, Y.; Wittlin, S.; Brun, R.;
Vennerstrom, J. L. J. Med. Chem. 2005, 48, 4953.
16. Two major isomers were formed in an approximate ratio
of 3:1; the two minor isomers could not be quantified due
to overlapping low intensity signals.
7. All new compounds provided satisfactory 1H and 13C
NMR and elemental analysis data. Full experimental
details can be found in: Vennerstrom, J. L.; Dong, Y.;
Chollet, J.; Matile, H.; Wang, X.; Sriraghavan, K.;
Charman, W. N. Spiro and Dispiro 1,2,4-trioxolane
Antimalarials, and their Preparation, Pharmaceutical
Compositions, and Use in the Treatment of Malaria,
Cancer, and Schistosomiasis. U.S. Pat. Appl. Publ. 2005,
23p, Cont.-in-part of U.S. Ser. No. 742,010. Although we
encountered no difficulties in working with these second-
ary ozonides (1,2,4-trioxolanes), routine precautions such
as the use of shields, fume hoods, and avoidance of metal
salts should be observed whenever possible.
8. Ozonide 1 was incubated for 2 h with human liver
microsomes (BD Gentest, Discovery Labware Inc.,
Woburn, MA) at a substrate concentration of 1 lM and
a microsomal protein concentration of 0.4 mg/mL as
previously described.5 Loss of parent compound and
appearance of metabolites were monitored by LC/MS.
LC/MS analysis was conducted on a Waters (Milford,
MA) Micromass Q-TOF Micro quadrupole-time-of-flight
mass spectrometer coupled to a Waters Alliance 2795
HPLC. Chromatographic separation was achieved using
an acetonitrile–water gradient (containing 0.05% formic
acid) at a flow rate of 0.4 mL/min and a Phenomenex
(Torrance, CA) Luna C8(2) column (50 · 2.1 mm, 5 lm
particle size) equipped with a precolumn of the same
packing material. Formation of metabolites was moni-
tored using MS full scans and confirmed using collision-
induced dissociation experiments.
17. cis,cis-5-Hydroxyadamantane-2-spiro-30-80-[[[(20-amino-
20-methylpropyl)-amino]carbonyl]methyl]-10,20,40-trioxa-
1
spiro[4.5]decane p-tosylate (2): mp 150–152 ꢁC; H NMR
(500 MHz, DMSO-d6) d 1.04–1.20 (m, 2H), 1.16 (s, 6H),
1.44–1.82 (m, 17H), 1.94–2.02 (m, 3H), 2.07 (d, J = 7.3 Hz,
2H), 2.29 (s, 3H), 3.19 (d, J = 5.8 Hz, 2H), 4.47 (br s, 1H),
7.11 (d, J = 8.3 Hz, 2H), 7.47 (d, J = 7.8 Hz, 2H), 7.67 (br
s, 3H), 8.05 (t, J = 6.0 Hz, 1H); 13C NMR (125.7 MHz,
DMSO-d6) d 20.94, 23.50, 28.61, 29.70, 33.35, 33.43, 37.58,
41.97, 44.50, 46.04, 54.54, 65.09, 108.65, 110.11, 125.66,
128.18, 137.66, 146.06, 172.55. Anal. Calcd for
C29H44N2O8S: C, 59.98; H, 7.64; N, 4.82. Found: C,
59.97; H, 7.40; N, 4.93.
18. Crystallographic data (excluding structural factors) for
structures 10 and 11 in this paper have been deposited with
the Cambridge Crystallographic Data Centre (CCDC) as
supplementary publication numbers CCDC 671176 and
671177. Copies of the data can be obtained, free of charge,
on application to CCDC, 12 Union Road, Cambridge,
CB2 1EZ, UK [fax: +44 (0)1223 336033 or e-mail:
deposit@ccdc.cam.ac.uk].
19. Tang, Y.; Dong, Y.; Wang, X.; Sriraghavan, K.; Wood, J.
K.; Vennerstrom, J. L. J. Org. Chem. 2005, 70, 5103.
20. Dong, Y.; Tang, Y.; Chollet, J.; Matile, H.; Wittlin, S.;
Charman, S. A.; Charman, W. N.; Santo Tomas, J.;
Scheurer, C.; Snyder, C.; Scorneaux, B.; Bajpai, S.;
Alexander, S. A.; Wang, X.; Padmanilayam, M.; Cheruku,
S. R.; Brun, R.; Vennerstrom, J. L. Bioorg. Med. Chem.
2006, 14, 6368.
9. White, R. E.; McCarthy, M.-B.; Egeberg, K. D.; Sligar, S.
G. Arch. Biochem. Biophys. 1984, 228, 493.
10. trans,cis-5-Hydroxyadamantane-2-spiro-30-80-[[[(20-amino-
20-methylpropyl)-amino]carbonyl]methyl]-10,20,40-trioxa-
1
spiro[4.5]decane p-tosylate (3): mp 200 ꢁC dec; H NMR
(500 MHz, DMSO-d6) d 1.02–1.15 (m, 2H), 1.16 (s, 6H),