C O M M U N I C A T I O N S
even in low-temperature studies.13 The putative oxidants in both
cases are iron(IV)-oxo porphyrin radical cations, that is, Compound
I analogues. Authentic Compound I analogues do not hydroxylate
unactivated C-H bonds rapidly, however.5 Both in nature and in
the laboratory, oxidation of the porphyrin-iron(III) species will
give a porphyrin-iron(V)-oxo derivative as the first-formed
intermediate, and it is possible that undetected iron(V)-oxo species
hydroxylate unactivated C-H bonds in substrates faster than they
isomerize to Compound I analogues.
Table 1. Second-Order Rate Constants at Ambient Temperature
for Oxidations of cis-Cyclooctene and Ethylbenzenea
4
5
6
7
cyclooctene
PhCH2CH3
5900
570
4
n.d.
600000
130000
50
4
Acknowledgment. This work was supported by a grant from
the National Institutes of Health (GM48722). We thank Prof. L.
W. Fung for assistance in the acquisition of ESR spectra.
a In units of M-1 s-1. Ar ) (C6F5). Data for 5, 6, and 7 are from refs 5
and 6; n.d. ) not determined.
Supporting Information Available: UV-visible spectra, ESR
spectra, and experimental details. This material is available free of
Scheme 2
References
(1) (a) Metalloporphyrins in Catalytic Oxidations; Sheldon, R. A., Ed.; Marcel
Dekker: New York, 1994. (b) Metal-Oxo and Metal-Peroxo Species in
Catalytic Oxidations; Meunier, B., Ed.; Springer-Verlag: Berlin, 2000.
(c) Meunier, B. Chem. ReV. 1992, 92, 1411. (d) Jacobsen, E. N. In
ComprehensiVe Organometallic Chemistry II; Wilkinson, G., Stone, F.
G. A., Abel, E. W., Hegedus, L. S., Eds.; Pergamon: New York, 1995;
Vol. 12, pp 1097-1135.
(2) (a) Cytochrome P450 Structure, Mechanism, and Biochemistry, 2nd ed.;
Ortiz de Montellano, P. R., Ed.; Plenum: New York, 1995. (b) Sono,
M.; Roach, M. P.; Coulter, E. D.; Dawson, J. H. Chem. ReV. 1996, 96,
2841. (c) Baldwin, J. E.; Bradley, M. Chem. ReV. 1990, 90, 1079. (d)
Que, L., Jr.; Ho, R. Y. N. Chem. ReV. 1996, 96, 2607. (e) Waller, B. J.;
Lipscomb, J. D. Chem. ReV. 1996, 96, 2625. (f) Baik, M. H.; Newcomb,
M.; Friesner, R. A.; Lippard, S. J. Chem. ReV. 2003, 103, 2385.
(3) (a) Dawson, J. H. Science 1988, 240, 433. (b) Groves, J. T.; Haushalter,
R. C.; Nakamura, M.; Nemo, T. E.; Evans, B. J. J. Am. Chem. Soc. 1981,
103, 2884.
(4) (a) Wagner, W. D.; Nakamoto, K. J. Am. Chem. Soc. 1988, 110, 4044.
(b) Wagner, W. D.; Nakamoto, K. J. Am. Chem. Soc. 1989, 111, 1590.
(5) Zhang, R.; Chandrasena, R. E. P.; Martinez, E., II; Horner, J. H.;
Newcomb, M. Org. Lett. 2005, 7, 1193.
(6) (a) Zhang, R.; Newcomb, M. J. Am. Chem. Soc. 2003, 125, 12418. (b)
Zhang, R.; Horner, J. H.; Newcomb, M. J. Am. Chem. Soc. 2005, 127,
6573. (c) Zhang, R.; Harischandra, D. N.; Newcomb, M. Chem.sEur. J.
2005, 11, 5713.
The assignment of an iron(V)-oxo structure to transient 4, as
opposed to an iron(IV)-oxo corrole radical cation, should be
considered tentative until the species can be prepared in high
conversion under conditions that permit more complete character-
ization. Nonetheless, the UV-visible spectrum and especially the
reactivity of 4 suggest the iron(V)-oxo structure. For example,
consider the rate constants shown in Table 1. Transient 4 is about
3 orders of magnitude more reactive than the analogous corrole-
manganese(V)-oxo species 5. In the related series of porphyrins,
the porphyrin-manganese(V)-oxo cation 6 reacts more than 4
orders of magnitude faster than the iron(IV)-oxo porphyrin radical
cation 7. Remarkably, the neutral transient 4 is 100 times more
reactiVe than the positively charged iron(IV)-oxo porphyrin radical
cation 7. If the new transient were the iron(IV)-oxo corrole radical
cation (8 in Scheme 2), one would expect the reactivity at ambient
temperature to be at least 6 orders of magnitude smaller than
observed.10
(7) Corrole-iron complexes are known to be oxidation catalysts with
sacrificial oxidants, but no iron-oxo transients have been detected in such
studies; see: Gross, Z.; Simkhovich, L.; Galili, N. Chem. Commun. 1999,
599.
The corrole-iron(V)-oxo structure 4 is not necessarily the low-
energy electronic configuration of the system. By analogy to
porphyrin-iron-oxo species,11 the isomeric iron(IV)-oxo corrole
radical cation 8 (Scheme 2) should be a lower-energy species than
4. If an intrinsic barrier for the electron transfer isomerization exists,
structures 4 and 8 will be distinct isomers and not resonance forms.
Such a barrier might result from a large degree of structural
reorganization in the macrocycle upon oxidation and the attendant
loss of delocalization energy. A barrier for electron transfer
isomerization of 4 to 8 can function to trap high reactivity in the
iron(V)-oxo species 4, which would be expected to oxidize
substrates rapidly, whereas the lower-energy isomer 8 would be
expected to react sluggishly.
The possibility that a ligand-iron(V)-oxo species can convert
relatively slowly to its iron(IV)-oxo ligand radical cation isomer
might be an important feature for understanding catalytic oxidations
by porphyrin-iron complexes in the laboratory and in nature. Under
catalytic turnover conditions, a porphyrin-iron catalyst will oxidize
cyclohexane,12 and cytochrome P450cam hydroxylates an unactivated
C-H bond in camphor so fast that the oxidant cannot be detected
(8) Simkhovich, L.; Goldberg, I.; Gross, Z. Inorg. Chem. 2002, 41, 5433.
(9) The UV-vis spectra of compounds 2 had sharp Soret bands and no
obvious absorbance in the Q-band region, whereas the spectrum of 3a
had a weak Soret absorbance distinct from that of 2 and a strong
absorbance in the Q-band region (λmax ) 650 nm) consistent with a ligand
radical cation. Compounds 2 were ESR silent, as expected for Fe(IV)
species with broad absorbances, and the ESR spectrum of 3a had a signal
at g ) 4.5. The spectra allow us to rule out iron(IV) corrole radical cations
and the known neutral iron(III) species as structures of 2 and 3,
respectively. Spectra are shown in the Supporting Information. For an
example of a metal corrole radical cation complex, see: Simkhovich, L.;
Mahammed, A.; Goldberg, I.; Gross, Z. Chem.sEur. J. 2001, 7, 1041.
(10) For discussions of reactivities of corrole- and related corrolazine-
manganese(V)-oxo species, see: (a) Gross, Z.; Gray, H. B. AdV. Synth.
Catal. 2004, 346, 165. (b) de Visser, S. P.; Ogliaro, F.; Gross, Z.; Shaik,
S. Chem.sEur. J. 2001, 7, 4954. (c) Mandimutsira, B. S.; Ramdhanie,
B.; Todd, R. C.; Wang, H.; Zareba, A. A.; Czernuszewicz, R. S.; Goldberg,
D. P. J. Am. Chem. Soc. 2002, 124, 15170. (d) Wang, S. H.; Mandimutsira,
B. S.; Todd, R.; Ramdhanie, B.; Fox, J. P.; Goldberg, D. P. J. Am. Chem.
Soc. 2004, 126, 18.
(11) Dey, A.; Ghosh, A. J. Am. Chem. Soc. 2002, 124, 3206.
(12) Collman, J. P.; Chien, A. S.; Eberspacher, T. A.; Brauman, J. I. J. Am.
Chem. Soc. 2000, 122, 11098.
(13) (a) Davydov, R.; Makris, T. M.; Kofman, V.; Werst, D. E.; Sligar, S. G.;
Hoffman, B. M. J. Am. Chem. Soc. 2001, 123, 1403. (b) Denisov, I. G.;
Makris, T. M.; Sligar, S. G. J. Biol. Chem. 2001, 276, 11648.
JA0542439
9
J. AM. CHEM. SOC. VOL. 127, NO. 40, 2005 13777