C O M M U N I C A T I O N S
20 + acid chloride 5) + (diene 6 + diene 7)] will allow for efficient,
modular preparation of related agents for mechanistic evaluation.
Connection of the pyrroline core with the C12 acyl group of 5
was achieved using a cuprate/acid chloride coupling.15 Formation
of Grignard reagent 21 occurred upon reaction of iodide 20 with
isopropylmagnesium chloride (THF, -60 °C, 20 min); transmeta-
lation to the corresponding cuprate 22 occurred upon treatment with
cuprous cyanide (-40 °C, 20 min). Reaction of cuprate 22 with
acid chloride 527 (-40 °C, 1 min) achieved formation of the
C12-C13 bond and provided â-bromoenone 23 in good yield
(65%). Compound 23 was the result of six synthetic transformations
(36% overall) from bromomaleimide.
Acknowledgment. This work was supported by a grant from
the National Cancer Institute (NIH CA91904).
Supporting Information Available: Experimental procedures and
characterization of compounds. This material is available free of charge
References
(1) Kakeya, H.; Kageyama, S.-I.; Nie, L.; Onose, R.; Okada, G.; Beppu, T.;
Norbury, C. J.; Osada, H. J. Antibiot. 2001, 54, 850.
(2) Winters, Z. E.; Ongkeko, W. M.; Harris, A. L.; Norbury, C. J. Oncogene
1998, 17, 673.
(3) Kakeya, H.; Takahashi, I.; Okada, G.; Isono, K.; Osada, H. J. Antibiot.
1995, 48, 733.
(4) Steyn, P. S.; Vleggaar, R. J. Chem. Soc., Chem. Commun. 1985, 17, 1189.
(5) Gelderblom, W. C. A.; Marasas, W. F. O.; Steyn, P. S.; Thiel, P. G.; van
der Merwe, K. J.; van Rooyen, P. H.; Vleggaar, R.; Wessels, P. L. J.
Chem. Soc., Chem. Commun. 1984, 122.
(6) Gelderblom, W. C. A.; Thiel, P. G.; Van der Merwe, K. J. Food Chem.
Toxicol. 1988, 26, 31-6.
(7) Savard, M. E.; Miller, J. D. J. Nat. Prod. 1992, 55, 64.
(8) Lam, Y. K. T.; Hensens, O. D.; Ransom, R.; Giazobbe, R. A.; Polishook,
J.; Zink, D. Tetrahedron 1996, 52, 1481.
(9) Hayashi, Y.; Yamaguchi, J.; Shoji, M. Tetrahedron 2002, 58, 9839.
(10) Yamaguchi, J.; Kakeya, H.; Uno, T.; Shoji, M.; Osada, H.; Hayashi, Y.
Angew. Chem., Int. Ed. 2005, 44, 3110.
(11) (a) Slee, E. A.; O’Connor, D. J.; Lu, X. Oncogene 2004, 23, 2809. (b)
Hofseth, L. J.; Hussain, S. P.; Harris, C. C. Trends Pharmacol. Sci. 2004,
25, 177. (c) Levine, A. J.; Finlay, C. A.; Hinds, P. W. Cell 2004, 116,
S67-S69. (d) Ja¨a¨ttela¨, M. Oncogene 2004, 23, 2746.
(12) Norbury, C. J.; Zhivotovsky, B. Oncogene 2004, 23, 2797.
(13) Gasco, M.; Crook, T. Drug Resist. Updates 2003, 6, 323.
(14) Wang, W.; Rastinejad, F.; El-Deiry, W. S. Cancer Biol. Ther. 2003, 2,
S55.
Two reasonable options existed for the ordering of the final
alkene couplings as a consequence of the necessary connections
between both C5-C6 and C9-C10: [diene 6 + diene 7] + enone
23 or [enone 23 + diene 6] + diene 7. Chemoselective Stille
coupling of the vinylstannane of 628 with the vinyl iodide of 7 was
achieved using triphenylarsine as the ligand for palladium (DMF,
25 °C, 18 h), and tetraene 24 was obtained in good yield. Tetraene
24 is six steps from 2-butyn-1-ol (29% overall).
(15) Knochel, P.; Dohle, W.; Gommermann, N.; Kneisel, F. F.; Kopp, F.; Korn,
T.; Sapountzis, I.; Vu, V. A. Angew. Chem., Int. Ed. 2003, 42, 4302.
(16) (a) Stille, J. K.; Milstein, D. J. Am. Chem. Soc. 1978, 100, 3636. (b) Stille,
J. K. Angew. Chem., Int. Ed. Engl. 1986, 25, 508. (c) Mitchell, T. N.
Synthesis 1992, 803. (d) Farina, V. Pure Appl. Chem. 1996, 68, 73. (e)
Farina, V.; Krishnamurthy, V.; Scott, W. J. Org. React. 1997, 50, 1.
(17) Coleman, R. S.; Walczak, M. C. Org. Lett. 2005, 7, 2289.
(18) (a) Miyaura, N.; Suzuki, A. Chem. ReV. 1995, 95, 2457. (b) Stanforth, S.
P. Tetrahedron 1998, 54, 263. (c) Suzuki, A. J. Organomet. Chem. 1999,
576, 147.
(19) Ensley, H. E.; Buescher, R. R.; Lee, K. J. Org. Chem. 1982, 47, 404.
(20) (a) Rossi, R.; Bellina, F.; Bechini, C.; Mannina, L.; Vergamini, P.
Tetrahedron 1998, 54, 135. (b) White, J. D.; Hanselmann, R.; Wardrop,
D. J. J. Am. Chem. Soc. 1999, 121, 1106.
Formation of the C9/C10 carbon-carbon bond by Suzuki-
Miyaura coupling18 of the vinyl boronate of tetraene 24 with the
vinyl bromide of pyrrolinone 23 afforded pentaene 25, completing
construction of the lucilactaene framework. Final treatment of 25
with trifluoroacetic acid (25 °C, 5 h) effected removal of the silyl
ethers and nitrogen protecting group, with concomitant conjugate
addition of the primary alcohol, and afforded lucilactaene (1).
The synthesis of the Fusarium metabolite lucilactaene was
achieved using a synthetic approach that is a significant departure
from existing work in the field with respect to methodology,
strategy, and synthetic efficiency.10,29 The synthesis of 1 was
achieved in eight linear steps and 17 total synthetic operations in
19% overall yield from commercially available compounds. The
convergent nature of this synthetic route wherein three organome-
tallic-based cross-coupling reactions of the four fragments [(iodide
(21) Fleming, I.; Newton, T. W.; Roessler, F. J. Chem. Soc., Perkin Trans. 1
1981, 2527.
(22) Corey, E. J.; Gilman, N. W.; Ganem, B. E. J. Am. Chem. Soc. 1968, 90,
5616.
(23) Zakarian, A.; Batch, A.; Holton, R. A. J. Am. Chem. Soc. 2003, 125,
7822.
(24) Nicolaus, R. A.; Nicoletti, R. Rend. Acad. Sci. Fis. Mater. (Soc. Nazl.
Sci., Napoli) 1959, 26, 148.
(25) Saito, S.; Nuckolls, C.; Rebek, J., Jr. J. Am. Chem. Soc. 2000, 122, 9628.
(26) Podlech, J.; Maier, T. C. Synthesis 2003, 633.
(27) Dzierba, C. D.; Zandi, K. S.; Mo¨llers, T.; Shea, K. J. J. Am. Chem. Soc.
1996, 118, 4711.
(28) 1,3-Butadiene 6 was prepared in 76% overall yield from propargyl
aldehyde diethyl acetal by stannylcupration and Takai olefination; see ref
17.
(29) (a) Hayashi, Y.; Narasaka, K. Chem. Lett. 1998, 313. (b) Hayashi, Y.;
Kanayama, J.; Yamaguchi, J.; Shoji, M. J. Org. Chem. 2002, 67, 9443.
(c) Kuramochi, K.; Nagata, S.; Itaya, H.; Matsubara, Y.; Sunoki, T.;
Uchiro, H.; Takao, K.-I.; Kobayashi, S. Tetrahedron 2003, 59, 9743.
JA056217G
9
J. AM. CHEM. SOC. VOL. 127, NO. 46, 2005 16039