5422
P. Grundt et al. / Bioorg. Med. Chem. Lett. 15 (2005) 5419–5423
has a somewhat higher binding affinity at the DAT (2-
fold) and a higher DAT over M1 selectivity than 4a.
However, with 4d DAT selectivity over NET was re-
duced by 3-fold.
References and notes
1. Kuhar, M. J.; Ritz, M. C.; Boja, J. W. Trends Neurosci.
1991, 14, 299.
2. Wise, R. A. Annu. Rev. Neurosci. 1996, 19, 319.
3. Newman, A. H. Med. Chem. Res. 1998, 8, 1.
4. Ikegami, A, Duvauchelle, C.L., Dopamine mechanisms
and cocaine reward. In International Review of Neurobi-
ology, 2004; Vol. 62, pp. 45.
5. Katz, J. L.; Izenwasser, S.; Kline, R. H.; Allen, A. C.;
Newman, A. H. J. Pharmacol. Exp. Ther. 1999, 288, 302.
6. Katz, J. L.; Kopajtic, T.; Agoston, G. E.; Newman, A. H.
J. Pharmacol. Exp. Ther. 2004, 288, 302.
In the benzhydrol ether (BZT) series, it has been shown
that N-demethylation at the N-8 nitrogen and alkylation
lead to higher DAT over muscarinc M1 selectivities.
Likewise, in compounds 4f–k this modification is gener-
ally well tolerated at the DAT and leads to a higher
DAT over M1 selectivity profile than the parent com-
pound 4a. Furthermore, these N-8 modified compounds
show a retained if not higher DAT over NET selectivity.
However, with the exception of 4k, all of these com-
pounds demonstrate a somewhat lower DAT over
SERT selectivity than 4a.
7. Newman, A. H.; Kulkarni, S. Med. Res. Rev. 2002, 22,
429.
8. Newman, A. H.; Kline, R. H.; Allen, A. C.; Izenwasser, S.;
George, C.; Katz, J. L. J. Med. Chem. 1995, 38, 3933.
9. Kline, R. H.; Izenwasser, S.; Katz, J. L.; Joseph, D. B.;
Bowen, W. D.; Newman, A. H. J. Med. Chem. 1997, 40,
851.
10. Meltzer, P. C.; Liang, A. Y.; Madras, B. K. J. Med. Chem.
1994, 37, 2001.
11. Zou, M. F.; Kopajtic, T.; Katz, J. L.; Newman, A. H.
J. Med. Chem. 2003, 46, 2908.
As such, the anilino amide derivative 4j exhibits the
highest DAT binding affinity (Ki = 4.61 nM) and the
highest DAT over NET and M1 selectivities in this series
(535- and 551-fold, respectively). Incidentally, the corre-
sponding ether derivative 6b (Ki = 4.61 nM) has a simi-
12. Meltzer, P. C.; Wang, B.; Chen, Z. M.; Blundell, P.;
Jayaraman, M.; Gonzalez, M. D.; George, C.; Madras, B.
K. J. Med. Chem. 2001, 44, 2619.
13. Simoni, D.; Roberti, M.; Rondanin, R.; Baruchello, R.;
Rossi, M.; Invidiata, F. P.; Merighi, S.; Varani, K.; Gessi,
S.; Borea, P. A.; Marino, S.; Cavallini, S.; Bianchi, C.;
Siniscalchi, A. Bioorg. Med. Chem. Lett. 2001, 11, 823.
14. Grundt, P.; Kopajtic, T. A.; Katz, J. L.; Newman, A. H.
Bioorg. Med. Chem. Lett. 2004, 14, 3295.
15. Simoni, D.; Rossi, M.; Bertolasi, V.; Roberti, M.;
Pizzirani, D.; Rondanin, R.; Baruchello, R.; Invidiata,
F. P.; Tolomeo, M.; Grimaudo, S.; Merighi, S.; Varani,
K.; Gessi, S.; Borea, P. A.; Marino, S.; Cavallini, S.;
Bianchi, C.; Siniscalchi, A. J. Med. Chem. 2005, 48,
3337.
lar binding affinity at the DAT and
a similar
selectivity profile over the NET and the muscarinic
M1 receptor.17 However, the benzhydrol ether deriva-
tive has a somewhat higher DAT over SERT selectivity
than 4j, (239-fold compared to 132-fold).17
The N-8 ethylamino derivative 4k shows a similar bind-
ing affinity at the DAT as the parent compound 4a. The
DAT over SERT and NET selectivity profile is retained,
if not somewhat improved. Compared to 4a, the binding
affinity at the muscarinic M1 receptor is greatly reduced
(170-fold).
The indole derivative 4l differs from the rest of the N-8
modified derivatives (compounds 4f–k) in that its bind-
ing affinity at the DAT is 6-fold lower than that of the
parent compound 4a. Further, its SERT affinity is the
highest within the series, presumably due to the indole
moiety as a serotonin-like pharmacophore, resulting in
only a 5-fold DAT over SERT selectivity. Indeed, the
DAT/SERT dual activity has been suggested to also
have promise as a cocaine-abuse medication target.24
Interestingly, the corresponding benzhydrol ether deriv-
ative 6d demonstrated a 5-fold lower binding affinity at
the DAT compared to that of 6a, but showed a 160-fold
DAT over SERT selectivity (Ki (SERT) = 4600 nM).
16. Agoston, G. E.; Wu, J. H.; Izenwasser, S.; George, C.;
Katz, J.; Kline, R. H.; Newman, A. H. J. Med. Chem.
1997, 40, 4329.
17. Robarge, M. J.; Agoston, G. E.; Izenwasser, S.; Kopajtic,
T.; George, C.; Katz, J. L.; Newman, A. H. J. Med. Chem.
2000, 43, 1085.
18. Newman, A. H.; Robarge, M. J.; Howard, I. M.;
Wittkopp, S. L.; George, C.; Kopajtic, T.; Izenwasser,
S.; Katz, J. L. J. Med. Chem. 2001, 44, 633.
19. Kulkarni, S. S.; Grundt, P.; Kopajtic, T.; Katz, J. L.;
Newman, A. H. J. Med. Chem. 2004, 47, 3388.
20. Berdini, V.; Cesta, M. C.; Curti, R.; DÕAnniballe, G.; Di
Bello, N.; Nano, G.; Nicolini, L.; Topai, A.; Allegretti, M.
Tetrahedron 2002, 58, 5669.
21. Lewin, A. H.; Sun, G. B.; Fudala, L.; Navarro, H.; Zhou,
L. M.; Popik, P.; Faynsteyn, A.; Skolnick, P. J. Med.
Chem. 1998, 41, 988.
In summary, these 3-amino derivatives of BZT show a
novel structural approach to the development of DAT
selective compounds. In general, the isosteric replace-
ment of the benzhydrol ether moiety by an amino benz-
hydryl group is well tolerated at the DAT and compared
to their ether counterparts, these derivatives show a sim-
ilar SAR. In vivo studies are currently underway.
22. Note: All new compounds have been fully characterized
by spectroscopic means. Representative data: 4a—IR: m
1
3303. H NMR (CDCl3): d 1.57 (d, J 13.2, 2H), 1.96–2.05
(m, 6H), 2.25 (s, 3H), 2.74 (t, J 6.6, 1H), 3.09 (s, 2H), 4.85
(s, 1H), 6.93–6.97 (m, 4H), 7.18–7.22 (m, 4H). 13C NMR
(CDCl3): d 26.97, 37.05, 40.92, 46.92, 60.84, 63.29, 115.31
(JCF 21), 128.91 (JCF 8), 139.67 (JCF 3), 161.44 (JCF 243).
4j—IR: m 3313, 1674. 1H NMR (CDCl3): 1.44 (s, 1H), 1.72
(d, J 14.0, 2H), 2.00–2.08 (m, 4H), 2.18 (m, 2H), 2.45 (t, J
5.6, 2H), 2.69 (t, J 5.6, 2H), 2.90 (t, J 6.0, 1H), 3.33 (s, 2H),
4.89 (s, 1H), 7.19–7.25 (m, 6H), 7.47 (d, J 7.6, 2H), 7.98–
7.25 (m, 5H), 11.53 (s, 1H). 13C NMR (CDCl3): d 26.99,
34.52, 37.27, 47.22, 48.78, 58.55, 63.27, 115.74 (JCF 21),
Acknowledgments
This work was funded by the National Institute on Drug
Abuse-Intramural Research Program. P.G. was sup-
ported by a NIH Visiting Fellowship.