596
H. YAMAGUCHI et al.
A., Stereochemical control of microbial reduction.
17. Mechanism to control the enantioselectivity in the
reduction with bakers' yeast. J. Org. Chem., 56,
4778–4783 (1991).
licolor A3(2) and the comparison of enzymatic
properties including the N-terminal amino acid se-
quence of the reductase with those of STKER are
now in progress in our laboratory.
13) Nakamura, K., Kawai, Y., Miyai, T., Honda, S.,
Nakajima, N., and Ohno, A., Stereochemical control
in microbial reduction. 18. Mechanism of
stereochemical control in diastereoselective reduction
with bakers' yeast. Bull. Chem. Soc. Jpn., 64,
1467–1470 (1991).
Acknowledgments
The work was partially supported by the Ministry
of Education, Science, Sport and Culture of Japan,
through a Grant-in-aid for Scientiˆc Research,
Encouragement of Young Scientists, No. 13780452
(2001–2002). We wish to express our appreciation to
Prof. N. Tokitoh, Institute for Chemical Research,
Kyoto University, for his useful advice during the
course of the work.
14) Nakamura, K., Kondo, S., Kawai, Y., Nakajima, N.,
and Ohno, A., Puriˆcation and characterization of a-
keto ester reductases from bakers' yeast. Biosci.
Biotechnol. Biochem., 58, 2236–2240 (1994).
15) Sonnleitner, B. and Fiechter, A., Application of
immobilized cells of Thermoanaerobium brockii for
stereoselective reductions of oxo-acid esters. Appl.
Microbiol. Biotechnol., 23, 424–429 (1986).
16) Biosson, D., Azerad, R., Sanner, C., and Larche-
veque, M., A study of the stereocontrolled reduction
References
1) Nakamura, K., Kawai, Y., Kitayama, T., Miyai, T.,
Ogawa, M., Mikata, Y., Higaki, M., and Ohno, A.,
Asymmetric reduction of ketones with microbes.
Bull. Inst. Chem. Res., Kyoto Univ., 67, 157–168
(1989).
of aliphatic
b-ketoesters by Geotrichum candidum.
Biocatalysis, 5, 249–265 (1992).
17) Nakamura, K., Highly stereoselective reduction of
ketones by Geotrichum candidum. J. Mol. Catal., B:
Enzym., 5, 129–132 (1998).
18) Miya, H., Kawada, M., and Sugiyama, Y.,
Stereoselective reduction of ethyl 2-methyl-3-
oxobutanoate by bacteria. Biosci. Biotechnol.
Biochem., 60, 95–98 (1996).
19) Wada, M., Kataoka, M., Kawabata, H., Yasohara,
Y., Kizaki, N., Hasegawa, J., and Shimizu, S.,
Puriˆcation and characterization of NADPH-depen-
dent carbonyl reductase, involved in stereoselective
reduction of ethyl 4-chloro-3-oxobutanoate, from
Candida magnoliae. Biosci. Biotechnol. Biochem.,
62, 280–285 (1998).
20) Kita, K., Nakase, K., Yanase, H., Kataoka, M.,
and Shimizu, S., Puriˆcation and characterization of
new aldehyde reductases from Sporobolomyces
salmonicolor AKU4429. J. Mol. Catal., B: Enzym.,
6, 305–313 (1999).
2) Suga, T. and Hirata, T., Biotransformation of ex-
ogenous substrates by plant cell cultures. Phytoche-
mistry, 29, 2394–2406 (1990).
3) Cusk, R. and Glaä nzer, B. I., Baker's yeast mediated
transformations in organic chemistry. Chem. Rev.,
91, 49–97 (1991).
4) Wong, C. -H., and Whitesides, G. M., Enzymes in
synthetic organic chemistry, Tetrahedron Organic
Series Vol. 12, 1st ed., Pergamon, Elsevier, Amster-
dam, pp. 41–194 (1994).
5) Roberts, S. M., Preparative biotransformations: the
employment of enzymes and whole cells in synthetic
organic chemistry. J. Chem. Soc., Perkin I, 157–169
(1998).
6) Sugai, T., Application of enzyme- and microor-
ganism-catalyzed reaction to organic synthesis. Curr.
Org. Chem., 3, 373–406 (1999).
7) Brooks, D. W. and Kellogg, R. P., Synthetic study of
polyene macrolides, synthesis of a C29–37 fragment
for amphotericin B and nystatin. Tetrahedron Lett.,
23, 4991–4994 (1982).
8) Kikukawa, T., Imaida, M., and Tai, A., Synthesis of
the sex-attractant of Pine Saw‰ies. Bull. Chem. Soc.
Jpn., 57, 1954–1960 (1984).
9) Mori, K., Biochemical methods in enantioselective
synthesis of bioactive natural products. Synlett.,
1097–1109 (1995).
10) Furuichi, A., Akita, H., Matsuzaka, H., Oishi, T.,
and Horikoshi, K., Puriˆcation and properties of an
asymmetric reduction enzyme of 2-methyl-3-
oxobutyrate in baker's yeast. Agric. Biol. Chem., 49,
2563–2570 (1985).
21) Ishihara, K., Iwai, K., Yamaguchi, H., Nakajima,
N., Nakamura, K., and Ohshima, T., Stereoselective
reduction of a- and b-keto esters with aerobic ther-
mophiles, Bacillus strains. Biosci. Biotechnol.
Biochem., 60, 1896–1898 (1996).
22) Ishihara, K., Nishitani, M., Yamaguchi, H.,
Nakajima, N., Ohshima, T., and Nakamura, N.,
Stereoselective reduction of
a-keto esters using
thermophilic actinomycetes. J. Ferment. Bioeng., 84,
268–270 (1997).
23) Ishihara, K., Yamaguchi, H., Hamada, H.,
Nakajima, N., and Nakamura, K., Stereocontrolled
reduction of
a-keto esters with thermophilic ac-
tinomycete, Streptomyces thermocyaneoviolaceus
IFO 14271. J. Mol. Catal., B: Enzym., 10, 429–434
(2000).
11) Shieh, W. -R., Gopalan, A. S., and Sih, C. J.,
Stereochemical control of yeast reductions. 5.
Characterization of the oxidoreductases involved in
the reduction of b-keto esters. J. Am. Chem. Soc.,
107, 2993–2994 (1985).
12) Nakamura, K., Kawai, Y., Nakajima, N., and Ohno,
24) Ishihara, K., Yamaguchi, H., Adachi, N., Hamada,
H., and Nakajima, N., Stereocontrolled reduction of
a
- and b-keto esters with micro green algae, Chlorella
strains. Biosci. Biotechnol. Biochem., 64, 2099–2103
(2000).
25) Ishihara, K., Nakajima, N., Yamaguchi, H.,