V. Gracias et al. / Tetrahedron Letters 46 (2005) 9049–9052
9051
Ma, V.;Kelly, M. G.;Jones, W.;Hulme, C. Tetrahedron
Lett. 2001, 42, 4963–4968;Lactonizations: Park, S. J.;
Keum, G.;Kang, S. B.;Koh, H. Y.;Kim, Y. Tetrahedron
Lett. 1998, 39, 7109–7112;Ring-closing metathesis: (j)
Hebach, C.;Kazmaier, U. Chem. Commun. 2003, 596–597;
(k) Beck, B.;Larbig, G.;Mejat, B.;Magnin-Lachaux, M.;
Picard, A.;Herdtweck, E.;Do¨mling, A. Org. Lett. 2003, 5,
1047–1050;(l) Banfi, L.;Basso, A.;Guanti, G.;Riva, R.
Tetrahedron Lett. 2003, 44, 7655–7658;(m) Piscopio, A.
D.;Miller, J. F.;Koch, K. Tetrahedron 1999, 55, 8189–
8198;(n) Lee, D.;Sello, J. K.;Schreiber, S. L. Org. Lett.
2000, 2, 709–712;(o) Krelaus, R.;Westermann, B.
Tetrahedron Lett. 2004, 45, 5987–5990;(p) Dietrich, S.
A.;Banfi, L.;Basso, A.;Damonte, G.;Guanti, G.;Riva,
R. Org. Biomol. Chem. 2005, 3, 97–106;(q) Kazmaier, U.;
Hebach, C.;Watzke, A.;Maier, S.;Mues, H.;Huch, V.
Org. Biomol. Chem. 2005, 3, 136–145;Wittig reaction:
Beck, B.;Picard, A.;Herdtweck, E.;Do ¨mling, A. Org.
Lett. 2004, 6, 39–42.
Aldehyde and amine components of varying chain
length were used in the van Leusen reaction to provide
the corresponding C1/C5-substituted metathesis pre-
cursors. These were subjected to the intramolecular
enyne metathesis sequence to provide products of var-
ied ring size (Table 1). A diverse set of 5,6- 5,7- and
5,8-fused bicyclic functionalized imidazoles was gener-
ated via this reaction sequence. With terminal alkynes
low yields of the metathesis product was observed
(Table 1, entry 1).14 In addition to simple primary
amines and aldehydes, secondary amino aldehydes
and amino esters were used as building blocks to pro-
vide another functional group for further elaboration
of the skeleton (Table 1, entries 4–6). The requisite
building blocks were purchased from commercial
sources or prepared according to known procedures
as illustrated in Scheme 1.15 Finally, the availability
of efficient routes to synthesize substituted TosMIC
reagents provides another site of diversity in the
three-component reaction.16 In conclusion, we have
demonstrated that by incorporating alkene–alkyne
inputs in the van Leusen reaction, followed by an
enyne metathesis reaction a variety of fused bicyclic
imidazoles can be readily generated. Each of the bicy-
clic scaffolds generated by this reaction sequence had
the diene functionality, which could then serve as a site
for further diversification. Elaboration of the bicyclic
dienes via cycloaddition reactions and other van Leu-
sen post-modification reactions are currently in pro-
gress and will be reported in due course.
3. Gracias, V.;Moore, J. D.;Djuric, S. W. Tetrahedron Lett.
2004, 45, 417–420.
4. Akritopoulou-Zanze, I.;Gracias, V.;Moore, J. D.;Djuric,
S. W. Tetrahedron Lett. 2004, 45, 3421–3423.
5. Akritopoulou-Zanze, I.;Gracias, V.;Djuric, S.
Tetra-
hedron Lett. 2004, 45, 8439–8441.
6. Vasudevan, A.;Verzal, K. M. Tetrahedron Lett. 2005, 46,
1697–1701.
7. (a) Greenlee, W. J.;Siegel, P. K. S. Annu. Rep. Med.
Chem. 1992, 27, 59;(b) Hodges, J. C.;Hamby, J. M.;
Blankley, C. J. Drugs Future 1992, 17, 575;(c) Meanwell,
N. A.;Romine, J. L.;Seiler, S. M. Drugs Future 1994, 19,
361.
8. (a) Frannowski, A.;Seliga, C.;Bur, D.;Streith, J.
Helv.
Chim. Acta 1991, 74, 934–940;(b) Nishi, T.;Higashi, K.;
Soga, T.;Takemura, M.;Sato, M. J. Antibiot. 1994, 47,
357–369;(c) Browne, L. J.;Gude, C.;Rodriguez, H.;
Steele, R. E. J. Med. Chem. 1991, 34, 725–736;(d)
Aldabbagh, F.;Bowman, W. R.;Mann, E. Tetrahedron
Lett. 1997, 38, 7937–7940.
Acknowledgement
The authors would like to thank the Structural Chemis-
try staff for NMR and MS data.
9. (a) van Leusen, A. M.;Wilderman, J.;Oldenzeil, O. H. J.
Org. Chem. 1977, 42, 1153–1159;(b) van leusen, A. M.
Lect. Heterocycl. Chem. 1980, 5, S-111.
References and notes
10. Gracias, V.;Gasiecki, A.;Djuric, S. W. Org. Lett. 2005, 7,
3183–3186.
1. For reviews on Ugi 4-CC reaction and other MCRs with
isocyanides, see: (a) Do¨mling, A.;Ugi, I. Angew. Chem.,
Int. Ed. 2000, 39, 3168–3210;(b) Hulme, C.;Gore, V.
Curr. Med. Chem. 2003, 10, 51–80;(c) Do¨mling, A. Curr.
Opin. Chem. Biol. 2002, 6, 306–313;(d) Zhu, J. Eur. J.
11. Poulsen, C. S.;Madsen, R. Synthesis 2003, 1–18.
12. This treatment results in the formation of the imidazolium
ion, preventing the lone pair of the imidazole nitrogen
from inactivating the Grubbs catalyst. See reference:
Chen, Y.;Dias, H. V. R.;Lovely, C. J.
Tetrahedron
Org. Chem. 2003, 1133–1144;(e) Gokel, G.;Lu dke, G.;
Ugi, I. In Isonitrile Chemistry;Ugi, I., Ed.;Academic:
New York, 1971;p 145.
Lett. 2003, 44, 1379–1382. Our reaction failed to yield the
enyne product in the absence of this pretreatment
procedure.
¨
2. Examples of post-Ugi transformations include the follow-
ing: Diels–Alder reactions: (a) Paulvannan, K. Tetra-
hedron Lett. 1999, 40, 1851–1854;(b) Wright, D. L.;
Robotham, C. V.;Aboud, K. Tetrahedron Lett. 2002, 43,
943–946;Amino-cyclizations: (c) Tempest, P.;Ma, V.;
Thomas, S.;Hua, Z.;Kelly, M. G.;Hulme, C. Tetrahedron
Lett. 2001, 42, 4959–4962;(d) Hulme, C.;Ma, L.;Kumar,
N. V.;Krolikowski, P. H.;Allen, A. C.;Labaudiniere, R.
Tetrahedron Lett. 2000, 41, 1509–1514;(e) Hulme, C.;
Peng, J.;Morton, G.;Salvino, J. M.;Herpin, T.;Labau-
diniere, R. Tetrahedron Lett. 1998, 39, 7227–7230;(f)
Strocker, A. M.;Keating, T. A.;Tempest, P. A.;
Armstrong, R. W. Tetrahedron Lett. 1996, 37, 1149–
1152;(g) Short, K. M.;Ching, B. W.;Mjalli, A. M. M.
Tetrahedron Lett. 1996, 37, 7489–7492;Nucleophilic
aromatic substitutions: (h) Cristau, P.;Vors, J.-P.;Zhu,
J. Tetrahedron Lett. 2003, 44, 5575–5578;(i) Tempest, P.;
13. A representative procedure is demonstrated by the prep-
aration of 6-isopropenyl-1-phenyl-8,9-dihydro-5H-imi-
dazo[1,5-a]azepine (2). To the 4-pentenal (126 mg,
1.5 mmol) in DMF (2 mL) was added but-2-yn-1-amine
(138 mg, 2.0 mmol) and the reaction mixture was stirred at
rt for 2.5 h. This was followed by the addition of phenyl
TosMIC (271 mg, 1.0 mmol) and K2CO3 (138 mg,
2.0 mmol) and the reaction mixture was allowed to stir
for an additional 17 h at rt. The reaction was quenched by
the addition of water. The aqueous layer was extracted
with EtOAc, dried (anhyd MgSO4) concentrated and
purified by flash chromatography (97–2.5–0.5: CH2Cl2–
CH3OH–NH3) to afford 230 mg (92%) of 1 as a clear oil.
1H NMR (300 MHz, CDCl3): d 1.84 (t, J = 3.0 Hz, 3H),
2.38 (m, 2H), 2.92 (m, 2H), 4.59 (m, 2H), 5.05 (m, 2H),
5.85 (m, 1H), 7.22–7.42 (m, 3H), 7.65 (m, 3H);MS (ESI):
m/z 251 (M+H). To a solution of 1 (190 mg, 0.76 mmol) in