ORGANIC
LETTERS
XXXX
Vol. XX, No. XX
000–000
Synthesis of Fluorenone and
Anthraquinone Derivatives from
Aryl- and Aroyl-Substituted Propiolates
€
Florian Punner, Justin Schieven, and Gerhard Hilt*
€
Fachbereich Chemie, Philipps-Universitat Marburg, Hans-Meerwein-Str.,
35043 Marburg, Germany
Received August 14, 2013
ABSTRACT
Fluorenone derivatives were generated from aryl-substituted propiolates via a cobalt-catalyzed DielsꢀAlder reaction/DDQ-oxidation and Friedelꢀ
Crafts-type cyclization. Several functional groups are tolerated, and good to excellent overall yields (up to 89%) could be achieved. For the synthesis of
anthraquinone derivatives, aroyl-substituted propiolates were applied in a zinc iodide catalyzed DielsꢀAlder reaction with 1,3-dienes. The subsequent
DDQ oxidation and FriedelꢀCrafts-type cyclization led to symmetrical as well as some unsymmetrical anthraquinones in good to excellent yields of up to
87% over the three-step reaction sequence.
Fluorenone and anthraquinone moieties can be found in
nature as part of natural products,1 and many applications
of fluorenone- and anthraquinone-type materials appear
in material chemistry and related sciences. The syntheses of
fluorenones and anthraquinones are well documented, and
several synthetic approaches exist with different scope and
limitations, such as the double FriedelꢀCrafts-type cycli-
zations of phthalic anhydride2 and thermal DielsꢀAlder
reactions of naphthoquinones.3 Most recently, CꢀH acti-
vation of diarylketones to fluorenones4 and biomimetic
synthesis via cyclization reactions of appropriate polyke-
tides toward anthraquinones were also reported.5
Based on our cobalt-catalyzed DielsꢀAlder reactions of
alkyneswith1,3-dienes,6 weinvestigatedthe possibilities of
using an aryl-substituted propiolate (1) as a synthon for an
€
(3) (a) Krohn, K.; Klimars, M.; Kohle, H.-J.; Ebeling, E. Tetrahedron
1984, 40, 3677. (b) Kelly, T. R.; Parekh, N. D. J. Org. Chem. 1982, 47,
5009. (c) Brisson, C.; Brassard, P. J. Org. Chem. 1981, 46, 1810.
(4) (a) Wertz, S.; Leifert, D.; Studer, A. Org. Lett. 2013, 15, 928. (b)
Gandeepan, P.; Hung, C.-H.; Cheng, C.-H. Chem. Commun. 2012, 48,
9379. (c) Chinnagolla, R. K.; Jeganmohan, M. Org. Lett. 2012, 14, 5246.
(d) Thirunavukkarasu, V. S.; Parthasarathy, K.; Cheng, C.-H. Angew.
Chem., Int. Ed. 2008, 47, 9462 –9465.
(1) (a) Thomson, R. H. Naturally Occurring Quinones IV; Blackie
Academic & Professional: London, 1997; pp 309ꢀ483. (b) Huang, Q.;
Shen, H.-M.; Chung, M. C. M.; Ong, C. N. Med. Res. Rev. 2007, 27, 609.
(c) Dhananjeyan, M. R.; Milev, Y. P.; Kron, M. A.; Nair, M. G. J. Med.
Chem. 2005, 48, 2822. (d) Pickhardt, M.; Gazova, Z.; von Bergen, M.;
Khlistunova, I.; Wang, Y.; Hascher, A.; Mandelkow, E.-M.; Biernat, J.;
Mandelkow, E. J. Biol. Chem. 2005, 280, 3628. (e) Perry, P. J.; Read,
M. A.; Davies, R. T.; Gowan, S. M.; Reszka, A. P.; Wood, A. A.;
Kelland, L. R.; Neidle, S. J. Med. Chem. 1999, 42, 2679. (f) Tierney,
(5) (a) Cordes, J.; Barrett, A. G. M. Eur. J. Org. Chem. 2013, 1318. (b)
Cordes, J.; Calo, F.; Anderson, K.; Pfaffeneder, T.; Laclef, S.; White,
A. J. P.; Barrett, A. G. M. J. Org. Chem. 2012, 77, 652. (c) Anderson, K.;
Calo, F.; Pfaffeneder, T.; White, A. J. P.; Barrett, A. G. M. Org. Lett.
2011, 13, 5748. (d) Miyatake-Ondozabal, H.; Barrett, A. G. M. Tetra-
hedron 2010, 66, 6331. (e) Navarro, I.; Basset, J.-F.; Hebbe, S.; Major,
ꢀ
M. T.; Grinstaff, M. W. J. Org. Chem. 2000, 65, 5355. (g) Gonzalez-
ꢀ
Cantalapiedra, E.; de Frutos, O.; Atienza, C.; Mateo, C.; Echavarren,
A. M. Eur. J. Org. Chem. 2006, 1430. (h) Shultz, D. A.; Sloop, J. C.;
Washington, G. J. Org. Chem. 2006, 71, 9104. (i) Itami, K.; Tonogaki,
K.; Nokami, T.; Ohashi, Y.; Yoshida, J.-I. Angew. Chem., Int. Ed. 2006,
45, 2404. (j) Usta, H.; Facchetti, A.; Marks, J. T. Org. Lett. 2008, 10,
1385. For selected recent reviews, see: (k) Ormond, A. B.; Freeman, H. S.
Materials 2013, 6, 817. (l) Zhang, X.; Guo, Y.; Liu, M.; Zhang, S. RSC
Advances 2013, 3, 2846.
€
S. M.; Werner, T.; Howsham, C.; Brackow, J.; Barrett, A. G. M. J. Am.
Chem. Soc. 2008, 130, 10293.
(6) (a) Danz, M.; Hilt, G. Adv. Synth. Catal. 2011, 353, 303. (b)
Auvinet, A.-L.; Harrity, J. P. A.; Hilt, G. J. Org. Chem. 2010, 75, 3893.
€
(c) Hilt, G.; Janikowski, J. Org. Lett. 2009, 11, 773. (d) Morschel, P.;
(2) For historical examples, see: (a) Baeyer, A. Chem. Ber. 1871, 4,
663. (b) Grimm, F. Chem. Ber. 1873, 6, 506. (c) Baeyer, A.; Caro, H.
Chem. Ber. 1875, 8, 152. (d) Lagodzinski, K. Chem. Ber. 1895, 28, 1427.
(e) Harrop, D.; Norris, R. V.; Weizmann, C. J. Chem. Soc. 1909, 95,
1317.
Janikowski, J.; Hilt, G.; Frenking, G. J. Am. Chem. Soc. 2008, 130, 8952.
(e) Hilt, G.; Danz, M. Synthesis 2008, 2257. (f) Hilt, G.; Hengst, C.
J. Org. Chem. 2007, 72, 7337. (g) Hilt, G.; Hengst, C. Synlett 2006, 3247.
(h) Hilt, G.; Janikowski, J.; Hess, W. Angew. Chem., Int. Ed. 2006, 45,
5204. (i) Hess, W.; Treutwein, J.; Hilt, G. Synthesis 2008, 3537.
r
10.1021/ol4023276
XXXX American Chemical Society