C O M M U N I C A T I O N S
Scheme 3
depending especially on the leaving-group ability of the corre-
sponding alkoxide or thioalkoxide on the ester. This methodology
with ynolates could be applied to a wide variety of esters and related
carbonyl compounds. Synthetic applications are now in progress
in our laboratory.
Acknowledgment. We thank Professor S. Kanemasa (Kyushu
University) for valuable discussions and Dr. J. Tanaka for X-ray
crystal structure analysis. This research was partially supported by
a Grant in Aid for Scientific Research from the Ministry of
Education, Culture, Sports, Science and Technology, Japan, and
PRESTO, JST.
Scheme 4
Supporting Information Available: Characterization of new
compounds, general procedures (PDF), and X-ray crystal structures
(CIF). This material is available free of charge via the Internet at http://
pubs.acs.org.
References
(1) For a review, see: Davis, B. R.; Garratt, P. J. In ComprehensiVe Organic
Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon: Oxford, 1991; Vol.
2, pp 795-863.
(2) Nonclassical Wittig reagents undergo olefination of esters. See: Tsunoda,
T.; Takagi, H.; Takada, D.; Kaku, H.; Ito, S. Tetrahedron Lett. 2000, 41,
235-237.
(3) (a) Tebbe, F. N.; Parshall, G. W.; Reddy, G. S. J. Am. Chem. Soc. 1978,
100, 3611. (b) Pine, S. H.; Pettit, R. J.; Geib, G. D.; Cruz, S. G.; Gallego,
C. H.; Tijerina, T.; Pine, R. D. J. Org. Chem. 1985, 50, 1212-1216. (c)
Pine, S. H.; Zahler, R.; Evans, D. A.; Grubbs, R. H. J. Am. Chem. Soc.
1980, 102, 3270-3272. (d) Grubbs, R. H.; Tumas, W. Science 1989, 243,
907-915. (e) Petasis, N. A.; Bzowej, E. I. J. Am. Chem. Soc. 1990, 112,
6392-6394. (f) Petasis, N. A.; Bzowej, E. I. J. Org. Chem. 1992, 57,
1327-1330. (g) Petasis, N.; Akritopoulou, I. Synlett 1992, 665-667. (h)
Petasis, N. A.; Bzowej, E. I. Tetrahedron Lett. 1993, 34, 943-946. (i)
Okazoe, T.; Takai, K.; Oshima, K.; Utimoto, K. J. Org. Chem. 1987, 52,
4412-4414. (j) Takai, K.; Kataoka, Y.; Okazoe, T.; Utimoto, K.
Tetrahedron Lett. 1988, 29, 1065-1068. (k) Matsubara, S.; Ukai, K.;
Mizuno, T.; Utimoto, K. Chem. Lett. 1999, 825-826. (l) Horikawa, Y.;
Watanabe, M.; Fujiwara, T.; Takeda, T. J. Am. Chem. Soc. 1997, 119,
1127-1128. (m) Takeda, T.; Sasaki, R.; Fujiwara, T. J. Org. Chem. 1998,
63, 7286-7288. (n) Takeda, T.; Watanabe, M.; Rahim, M. A.; Fujiwara,
T. Tetrahedron Lett. 1998, 39, 3753-3756. (o) Rahim, M. A.; Sasaki,
H.; Saito, J.; Fujiwara, T.; Takeda, T. Chem. Commun. 2001, 625-626.
(p) Takeda, T.; Shimane, K.; Ito, K.; Saeki, N.; Tsubouchi, A. Chem.
Commun. 2002, 1974-1975. (q) Yan, T.-H.; Chien, C.-T.; Tsai, C.-C.;
Lin, K.-W.; Wu, Y.-H. Org. Lett. 2004, 6, 4965-4967.
reports.5 The preferential generation of the E-form indicates outward
rotation of the alkoxy substituent on the oxetene (â-lactone enolate).
These results can be elucidated by Houk’s torquoselectivity, which
shows that electron-donating substituents, such as alkoxy groups,
rotate outward.5e,9
The olefinated products, R,â-substituted (E)-â-alkoxyacrylic
acids, were converted to synthetically useful intermediates. For
example, the carboxylic acid 3da was transformed to the Weinreb
amide 4,10 which was reacted with methyllithium to give the methyl
ketone 5 in good yield (Scheme 3). The Claisen rearrangement of
the â-allyloxyacrylic ester 6, prepared from 3fa, furnished the â-keto
ester 7 bearing a quaternary carbon in good yield. These transfor-
mations demonstrate the high potential of â-alkoxy acrylic acids
in synthetic organic chemistry.
In contrast to esters, thiol esters 8 did not provide the olefins,
but instead gave the homologated â-keto thiol esters 12 in good
yields (Scheme 4). The efficient elimination of the thiolates (R2-
SLi) from the initial adducts 9, formed by the addition of the
ynolates to 8, would be followed by the attack of the thiolate on
the resulting R-keto ketene 10 to afford the â-keto thiol ester
enolates 11. Both esters of dodecanethiol and thiophenol provided
the desired â-keto thiol esters 12 in good yields. This homologation
can be formally regarded as the insertion of the ynolate carbon
framework into the C-S bond of thiol esters, which is a new type
of Claisen condensation. This olefination-insertion switching would
depend on the leaving-group ability of the (thio)alkoxides.11
In conclusion, we have developed the first stereoselective
olefination of esters affording tetrasubstituted, functionalized enol
ethers, which are useful synthetic intermediates for various C-C
bond formations. We also have found a new homologation of thiol
esters giving â-keto thiol esters. The reaction mode changes
(4) For reviews, see: (a) Shindo, M. Synthesis 2003, 2275-2288. (b) Shindo,
M. J. Synth. Org. Chem. Jpn. 2000, 58, 1155-1166. (c) Shindo, M.
Yakugaku Zasshi 2000, 120, 1233-1246. (d) Shindo, M. Chem. Soc. ReV.
1998, 27, 367-374.
(5) (a) Shindo, M.; Sato, Y.; Shishido, K. Tetrahedron Lett. 1998, 39, 4857-
4860. (b) Shindo, M.; Sato, Y.; Shishido, K. J. Org. Chem. 2000, 65,
5443-5445. (c) Shindo, M.; Matsumoto, K.; Mori, S.; Shishido, K. J.
Am. Chem. Soc. 2002, 124, 6840-6841. (d) Shindo, M.; Sato, Y.;
Yoshikawa, T.; Koretsune, R.; Shishido, K. J. Org. Chem. 2004, 69, 3912-
3916. (e) Mori, S.; Shindo, M. Org. Lett. 2004, 6, 3945-3948. (f) Shindo,
M.; Yoshikawa, T.; Itou, Y.; Mori, S.; Nishii, T.; Shishido, K. Chem.-
Eur. J. 2006, 12, 524-536.
(6) Shindo, M.; Sato, Y.; Koretsune, R.; Yoshikawa, T.; Matsumoto, K.; Itoh,
K.; Shishido, K. Chem. Pharm. Bull. 2003, 51, 477-478.
(7) (a) Shindo, M. Tetrahedron Lett. 1997, 38, 4433-4436. (b) Shindo, M.;
Sato, Y.; Shishido, K. Tetrahedron 1998, 54, 2411-2422. (c) Shindo,
M.; Koretsune, R.; Yokota, W.; Itoh, K.; Shishido, K. Tetrahedron Lett.
2001, 42, 8357-8360.
(8) The product was obtained without loss of optical purity.
(9) (a) Kirmse, W.; Rondan, N. G.; Houk, K. N. J. Am. Chem. Soc. 1984,
106, 7989-7991. (b) Rondan, N. G.; Houk, K. N. J. Am. Chem. Soc.
1985, 107, 2099-2111. (c) Dolbier, W. R., Jr.; Koroniak, H.; Houk, K.
N.; Sheu, C. Acc. Chem. Res. 1996, 29, 471-477.
(10) Knorr, R.; Trzeciak, A.; Bannwarth, W.; Gillessen, D. Tetrahedron Lett.
1989, 30, 1927-1930.
(11) The reaction of phenyl benzoate with ynolate 2a gave no olefin but gave
the â-keto phenyl ester in ca. 30% yield. The allyl ester (Table 1, entry
8, footnote a) also produced the homologated product as a side product.
JA0561082
9
J. AM. CHEM. SOC. VOL. 128, NO. 4, 2006 1063