G
D. Cheng et al.
Paper
Synthesis
Mixture of 6-Methyl-4-phenyl-2-(p-tolyl)quinoline and 6-Methyl-
2-phenyl-4-(p-tolyl)quinoline as 3:1 (2r)
Zuñiga, O. M. P.; Romanelli, G. P.; Fernandes, S. A. Bioorg. Med.
Chem. 2017, 25, 1153. (c) Alonso, C.; Fuertes, M.; Martín-Encinas,
E.; Selas, A.; Rubiales, G.; Tesauro, C.; Knudssen, B. K.; Palacios, F.
Eur. J. Med. Chem. 2018, 149, 225.
Reaction time: 2 h; purification by column chromatography on silica
gel (200–300 mesh) with petroleum ether and EtOAc (25:1) as eluent.
(9) (a) Tokunaga, M.; Eckert, M.; Wakatsuki, Y. Angew. Chem. Int. Ed.
1999, 38, 3222. (b) Korivi, R. P.; Cheng, C.-H. J. Org. Chem. 2006,
71, 7079. (c) Horn, J.; Marsden, S. P.; Nelson, A.; House, D.;
Weingarten, G. G. Org. Lett. 2008, 10, 4117. (d) Wang, Y.; Chen,
C.; Peng, J.; Li, M. Angew. Chem. Int. Ed. 2013, 52, 5323. (e) Zhou,
W.; Lei, J. Chem. Commun. 2014, 50, 5583. (f) Trillo, P.; Pastor, I.
M. Adv. Synth. Catal. 2016, 358, 2929. (g) Zheng, W.; Yang, W.;
Luo, D.; Min, L.; Wang, X.; Hu, Y. Adv. Synth. Catal. 2019, 361,
1995. (h) Kundal, S.; Chakraborty, B.; Paul, K.; Jana, U. Org.
Biomol. Chem. 2019, 17, 2321.
Yield: 0.1392 g (90%); white solid.
1H NMR (500 MHz, CDCl3): = 8.24–8.19 (m, 1+3/4×2 H), 8.14 (d, J =
8.2 Hz, 1/4×2 H), 7.81 (d, 1 H), 7.74 (s, 3/4×1 H), 7.69 (s, 1/4×1 H),
7.61–7.55 (m, 4 H), 7.51–7.49 (m, 2 H), 7.40 (d, J = 7.9 Hz, 3/4×2 H),
7.37 (d, J = 8.0 Hz, 1/4×2 H), 2.53–2.47 (m, 6 H).
13C NMR (126 MHz, CDCl3): = 156.0, 148.5, 147.4, 139.8, 139.2,
138.7, 138.2, 136.9, 136.1, 136.0, 135.7, 131.7, 129.8, 129.7, 129.52,
129.49, 129.4, 129.3, 129.1, 128.8, 128.5, 128.2, 127.5, 127.3, 125.8,
125.6, 124.44, 124.35, 119.3, 119.2, 21.8, 21.3.
(10) (a) Johnson, W. S.; Mathews, F. J. J. Am. Chem. Soc. 1944, 66, 210.
(b) Born, J. L. J. Org. Chem. 1972, 37, 3952.
HRMS (ESI): m/z [M + H]+ calcd for C23H20N: 310.159; found:
310.1577.
(11) (a) Martínez, R.; Ramón, D. J.; Yus, M. Eur. J. Org. Chem. 2007,
1599. (b) Martínez, R.; Ramón, D. J.; Yus, M. J. Org. Chem. 2008,
73, 9778. (c) Marco-Contelles, J.; Pérez-Mayoral, E.; Samadi, A.;
Carreiras, M. D. C.; Soriano, E. Chem. Rev. 2009, 109, 2652.
(d) Anand, N.; Koley, S.; Ramulu, B. J.; Singh, M. S. Org. Biomol.
Chem. 2015, 13, 9570. (e) Das, K.; Mondal, A.; Srimani, D. Chem.
Commun. 2018, 54, 10582. (f) Das, S.; Maiti, D.; De Sarkar, S.
J. Org. Chem. 2018, 83, 2309.
Funding Information
The authors are grateful to the Natural Science Foundation of China
(21602197) and the Natural Science Foundation of Zhejiang Province
(LY18B020018).
N
aturalS
c
i
e
n
c
e
F
o
u
n
d
ati
o
n
of
Z
h
e
j
i
a
n
g
Pro
v
i
n
c
e
(L
Y
1
8
B
0
2
0
0
1
8)NaturalS
c
i
e
n
c
e
F
o
u
n
d
ati
o
n
of
C
h
i
n
a
(2
1
6
0
2
1
9
7)
(12) (a) Cao, K.; Zhang, F.-M.; Tu, Y.-Q.; Zhuo, X.-T.; Fan, C.-A. Chem.
Eur. J. 2009, 15, 6332. (b) Kulkarni, A.; Török, B. Green Chem.
2010, 12, 875. (c) Rotzoll, S.; Willy, B.; Schönhaber, J.; Rominger,
F.; Müller, T. J. J. Eur. J. Org. Chem. 2010, 3516. (d) Zhang, X.; Liu,
B.; Shu, X.; Gao, Y.; Lv, H.; Zhu, J. J. Org. Chem. 2012, 77, 501.
(e) Meyet, C. E.; Larsen, C. H. J. Org. Chem. 2014, 79, 9835.
(f) Deshidi, R.; Devari, S.; Shah, B. A. Org. Chem. Front. 2015, 2,
515. (g) Jiang, K.-M.; Kang, J.-A.; Jin, Y.; Lin, J. Org. Chem. Front.
2018, 5, 434.
Supporting Information
Supporting information for this article is available online at
S
u
p
p
orit
n
gInformati
o
n
S
u
p
p
orti
n
gInformati
o
n
References
(1) Chen, Y. L.; Fang, K. C.; Sheu, J. Y.; Hsu, S. L.; Tzeng, C. C. J. Med.
Chem. 2001, 44, 2374.
(2) Kaur, K.; Jain, M.; Reddy, R. P.; Jain, R. Eur. J. Med. Chem. 2010,
45, 3245.
(3) Praveen, C.; DheenKumar, P.; Muralidharan, D.; Perumal, P. T.
Bioorg. Med. Chem. Lett. 2010, 20, 7292.
(13) (a) Liu, P.; Wang, Z.; Lin, J.; Hu, X. Eur. J. Org. Chem. 2012, 1583.
(b) Su, Y.; Lu, M.; Dong, B.; Chen, H.; Shi, X. Adv. Synth. Catal.
2014, 356, 692. (c) Liu, J.; Liu, F.; Zhu, Y.; Ma, X.; Jia, X. Org. Lett.
2015, 17, 1409. (d) Gao, X.-T.; Gan, C.-C.; Liu, S.-Y.; Zhou, F.; Wu,
H.-H.; Zhou, J. ACS Catal. 2017, 7, 8588. (e) Ahmed, W.; Zhang,
S.; Yu, X.; Yamamoto, Y.; Bao, M. Green Chem. 2018, 20, 261.
(f) Wang, C.; Yang, J.; Meng, X.; Sun, Y.; Man, X.; Li, J.; Sun, F.
Dalton Trans. 2019, 4474.
(14) (a) Gabriele, B.; Mancuso, R.; Salerno, G.; Ruffolo, G.; Plastina, P.
J. Org. Chem. 2007, 72, 6873. (b) Ali, S.; Zhu, H.-T.; Xia, X.-F.; Ji,
K.-G.; Yang, Y.-F.; Song, X.-R.; Liang, Y.-M. Org. Lett. 2011, 13,
2598. (c) Stein, A. L.; Rosário, A. R.; Zeni, G. Eur. J. Org. Chem.
2015, 5640. (d) Reddy, A. C. S.; Anbarasan, P. J. Catal. 2018, 363,
102. (e) Evoniuk, C. J.; Gomes, G. D. P.; Hill, S. P.; Fujita, S.;
Hanson, K.; Alabugin, I. V. J. Am. Chem. Soc. 2017, 139, 16210.
(f) Yaragorla, S.; Pareek, A. Eur. J. Org. Chem. 2018, 1863.
(g) Syroeshkin, M. A.; Kuriakose, F.; Saverina, E. A.; Timofeeva, V.
A.; Egorov, M. P.; Alabugin, I. V. Angew. Chem. Int. Ed. 2019, 58,
5532.
(15) Rehan, M.; Hazra, G.; Ghorai, P. Org. Lett. 2015, 17, 1668.
(16) Evoniuk, C. J.; Hill, S. P.; Hanson, K.; Alabugin, I. V. Chem.
Commun. 2016, 52, 7138.
(17) (a) Cheng, D. P.; Wu, L. J.; Lv, H. W.; Xu, X. L.; Yan, J. Z. J. Org.
Chem. 2017, 82, 1610. (b) Cheng, D. P.; Chen, T. P.; Xu, X. L.; Yan,
J. Z. Adv. Synth. Catal. 2018, 360, 901. (c) Cheng, D. P.; Wang, M.
L.; Deng, Z. T.; Yan, X. H.; Xu, X. L.; Yan, J. Z. Eur. J. Org. Chem.
2019, 4589. (d) Cheng, D. P.; Deng, Z. T.; Yan, X. H.; Wang, M. L.;
Xu, X. L.; Yan, J. Z. Adv. Synth. Catal. 2019, 361, 5025.
(4) Mukherjee, S.; Pal, M. Drug Discovery Today 2013, 18, 389.
(5) (a) Andrews, S.; Burgess, S. J.; Skaalrud, D.; Kelly, J. X.; Peyton, D.
H. J. Med. Chem. 2010, 53, 916. (b) Tejería, A.; Pérez-Pertejo, Y.;
Reguera, R. M.; Carbajo-Andrés, R.; Balaña-Fouce, R.; Alonso, C.;
Martin-Encinas, E.; Selas, A.; Rubiales, G.; Palacios, F. Eur. J. Med.
Chem. 2019, 162, 18. (c) Hu, Y.-Q.; Gao, C.; Zhang, S.; Xu, L.; Xu,
Z.; Feng, L.-S.; Wu, X.; Zhao, F. Eur. J. Med. Chem. 2017, 139, 22.
(6) (a) Jenekhe, S. A.; Lu, L.; Alam, M. M. Macromolecules 2001, 34,
7315. (b) Zhang, Y.; Sigman, M. S. J. Am. Chem. Soc. 2007, 129,
3076. (c) Xu, H.; Chen, R.; Sun, Q.; Lai, W.; Su, Q.; Huang, W.;
Liu, X. Chem. Soc. Rev. 2014, 43, 3259.
(7) (a) Kouznetsov, V.; Mendez, L.; Gómez, C. Curr. Org. Chem. 2005,
9, 141. (b) Madapa, S.; Tusi, Z.; Batra, S. Curr. Org. Chem. 2008,
12, 1116. (c) Majumder, A.; Gupta, R.; Jain, A. Green Chem. Lett.
Rev. 2013, 6, 151. (d) Khusnutdinov, R. I.; Bayguzina, A. R.;
Dzhemilev, U. M. J. Organomet. Chem. 2014, 768, 75.
(e) Chelucci, G.; Porcheddu, A. Chem. Rec. 2017, 17, 200.
(f) Batista, V. F.; Pinto, D. C. G. A.; Silva, A. M. S. ACS Sustainable
Chem. Eng. 2016, 4, 4064. (g) Nainwal, L. M.; Tasneem, S.;
Akhtar, W.; Verma, G.; Khan, M. F.; Parvez, S.; Shaquiquzzaman,
M.; Akhter, M.; Alam, M. M. Eur. J. Med. Chem. 2019, 164, 121.
(8) (a) Keri, R. S.; Patil, S. A. Biomed. Pharmacother. 2014, 68, 1161.
(b) Liberto, N. A.; Simões, J. B.; de Paiva Silva, S.; da Silva, C. J.;
Modolo, L. V.; de Fátima, Â.; Silva, L. M.; Derita, M.; Zacchino, S.;
© 2020. Thieme. All rights reserved. Synthesis 2020, 52, A–H