C O M M U N I C A T I O N S
Scheme 1. A Proposed Pathway for R-Alkylidene-â-lactam 7
Acknowledgment. The authors gratefully acknowledge the
support for this work by a Grant-in-aid for Scientific Research,
Ministry of Education, Culture, Sports, Science and Technology
of Japan.
Supporting Information Available: Experimental details and
characterization data of all new compounds. This material is available
References
(1) For recent reviews, see: (a) Ogawa, A. J. Organomet. Chem. 2000, 611,
463. (b) Kondo, T.; Mitsudo, T. Chem. ReV. 2000, 100, 3205. (c)
Suginome, M.; Ito, Y. Chem. ReV. 2000, 100, 3221. (d) Beletskaya, I.;
Moberg, C. Chem. ReV. 1999, 99, 3435. (e) Han, L.-B.; Tanaka, M. Chem.
Commun. 1999, 395. (f) Ogawa, A. In Main Group Metals in Organic
Synthesis; Yamamoto, H.; Oshima, K., Eds.; Wiley-VCH: Weinheim,
2004; p 813-866. (g) Kuniyasu, H. In Catalytic Heterofunctionalization;
Togni, A., Gru¨tzmacher, H., Eds.; Wiley-VCH: Weinheim, 2001; p 217-
251.
(2) Recent report of Ru-catalyzed addition of RS-NR′2 to alkynes: Kondo,
T.; Baba, A.; Nishi, Y.; Mitsudo, T. Tetrahedron Lett. 2004, 45, 1469.
(3) For synthetic utilities of vinyl chalcogenides, see: (a) Trost, B. M.; Lavoie,
A. C. J. Am. Chem. Soc. 1983, 105, 5075. (b) de Lucchi, O.; Pasquato, L.
Tetrahedron 1988, 44, 6755. (c) Comasseto, J. V.; Ling, L. W.; Petragnani,
N.; Stefani, H. A. Synthesis 1997, 373. (d) Ogawa, A.; Doi, M.; Ogawa,
I.; Hirao, T. Angew. Chem., Int. Ed. 1999, 38, 2027. (e) Sheng, S.-R.;
Liu, X.-L.; Xu, Q.; Song, C.-S. Synthesis 2003, 2763.
Table 1. Intramolecular Cyclization of 3 to Form 7a
isolated yield (NMR yield)
run
3
R
R
′
of 7
E/Z
1
3a
3a
3b
3c
3d
3e
Me
Me
nBu
Bn
Bn
Me
H
H
H
H
Et
74%
81%
60% (85%)
59% (84%)
88% (94%)
76%
0/100
0/100
2/98
3/97
3/97
(4) Choi, N.; Kabe, Y.; Ando, W. Tetrahedron Lett. 1991, 32, 4573.
2b
3c
4
(5) (a) Zhao, C.-Q.; Huang, X.; Meng, J.-B. Tetrahedron Lett. 1998, 39, 1933.
(b) Zhao, C.-Q.; Li, J.-L.; Meng, J.-B.; Wang, Y.-M. J. Org. Chem. 1998,
63, 4170.
5c
6d
(6) (a) Hua, R.; Takeda, H.; Onozawa, S.; Abe, Y.; Tanaka, M. J. Am. Chem.
Soc. 2001, 123, 2899. (b) Tanaka, M.; Hua, R. Pure Appl. Chem. 2002,
74, 181.
4-ClC6H4
11/89
a Conditions: 3 (0.4 mmol), Pd(PPh3)4 (5 mol %), toluene (2 mL), reflux,
(7) (a) Sugoh, K.; Kuniyasu, H.; Sugae, T.; Ohtaka, A.; Takai, Y.; Tanaka,
A.; Machino, C.; Kambe, N.; Kurosawa, H. J. Am. Chem. Soc. 2001, 123,
5108. (b) Hirai, T.; Kuniyasu, H.; Kambe, N. Chem. Lett. 2004, 33, 1148.
(c) Hirai, T.; Kuniyasu, H.; Kambe, N. Tetrahedron Lett. 2005, 46, 117.
(d) Kuniyasu, H. Kurosawa, H. Chem. Eur. J. 2002, 8, 2660.
1 h. b Pd(PPh3)4 (1 mol %). c Toluene (0.5 mL). d Toluene (4 mL), 20 h.
Although all attempts to directly observe the intermediates by
1H and 31P NMR in a stoichiometric mixture of 3a and Pd(PPh3)4
failed, we propose that coordination of the internal C-C triple bond
to Pd16 occurs prior to or after the oxidative addition of the Se-C
bond to Pd (via 4′ or 4 in Scheme 1, respectively), leading to 5.
Meyer and Knapton recently developed a Pd-catalyzed four-
component coupling reaction of sulfonamides with diselenides,
alkynes, and carbon monoxide to give â-seleno acrylamides.9 They
also claimed that thiocarbamoylation of 1-pentyne with PhSC(O)-
NMe2 was sluggish (<5%).9a On the other hand, intramolecular
thiocarbamoylation took place efficiently under similar reaction
conditions as shown in eq 5. Intramolecular Pd-catalyzed seleno-
(8) Hirai, T.; Kuniyasu, H.; Kato, T.; Kurata, Y.; Kambe, N. Org. Lett. 2003,
5, 3871.
(9) (a) Knapton, D. J.; Meyer, T. Y. J. Org. Chem. 2005, 70, 785. (b) Knapton,
D. J.; Meyer, T. Y. Org. Lett. 2004, 6, 687.
(10) For pharmacological activity of R-alkylidene-â-lactams, see: (a) Buynak,
J. D.; Rao, A. S.; Ford, G. P.; Carver, C.; Adam, G.; Geng, B.; Bachmann,
B.; Shobassy, S.; Lackey, S. J. Med. Chem. 1997, 40, 3423. (b)
Venkatesan, A. M.; Gu, Y.; Santos, O. D.; Abe, T.; Agarwal, A.; Yang,
Y.; Petersen, P. J.; Weiss, W. J.; Mansour, T. S.; Nukaga, M.; Hujer, A.
M.; Bonomo, R. A.; Knox, J. R. J. Med. Chem. 2004, 47, 6556. (c)
Michaux, C.; Charlier, P.; Fre´re, J.-M.; Wouter, J. J. Am. Chem. Soc.
2005, 127, 3262.
(11) For transition-metal-catalyzed carbonylation leading to R-alkylidene-â-
lactams, see: (a) Alper, H.; Hamel, N. Tetrahedron Lett. 1987, 28, 3237.
(b) Bonardi, A.; Costa, M.; Gabriele, B.; Salerno, G.; Chiusoli, G. P.
Tetrahedron Lett. 1995, 36, 7495. (c) Ma, S.; Wu, B.; Jiang, X. J. Org.
Chem. 2005, 70, 2588. For other synthetic procedures, see refs 11c, 12b
and references therein.
(12) For synthetic utilities of R-alkylidene-â-lactams, see: (a) Buynak, J. D.;
Rao, M. N.; Pajouhesh, H.; Chandrasekaran, R. Y.; Finn, K.; de Meester,
P.; Chu, S. C. J. Org. Chem. 1985, 50, 4245. (b) Alcaide, B.; Esteban,
G.; Mart´ın-Cantalejo, Y.; Plumet, J.; Rodr´ıguez-Lo´pez, J.; Monge, A.;
Pe´rez-Garc´ıa, V. J. Org. Chem. 1994, 59, 7994. (c) Anklam, S.; Liebscher,
J. Tetrahedron 1998, 54, 6369. (d) Adam, W.; Groer, P.; Humpf, H.-U.;
Saha-Mo¨ller, C. R. J. Org. Chem. 2000, 65, 4919.
(13) Insertion of alkynes to S-Pd (ref 6), S-Pt (ref 7), Se-Pd (ref 9), and
Se-Pt (ref 8) bonds was already proposed.
(14) Other transition-metal complexes examined such as Pd(dba)2, Pd(OAc)2,
Pd(PPh3)2Cl2, Pt(PPh3)4, Ni(COD)2, and Ni(PPh3)4 were ineffective.
acylation also proceeded efficiently to give 2-methylidene cyclobu-
tanone 15 in high yield from selenol ester 14 (eq 6).17
In summary, Pd(PPh3)4 catalyzes intermolecular selenocarbam-
oylation of 1-octyne with carbomoselenoate 1 to afford a â-seleno
acrylamide in a moderate yield. This catalytic system can success-
fully be applied to intramolecular systems giving rise to the
conjugated lactams and a cyclobutanone having seleno and thio
substituted exo methylene groups at the R-carbon. A significant
role of alkyne coordination to Pd in this catalytic reaction is
proposed.
(15) Fielding, M. R.; Grigg, R.; Urch, C. J. Chem. Commun. 2000, 2239.
(16) For intermolecular coordination of alkyne to Pd(0), see: Amatore, C.;
Bensalem, S.; Ghalem, S.; Jutand, A.; Medjour, Y. Eur. J. Org. Chem.
2004, 366.
(17) Formation of E-products may arise by isomerization of palladacycles such
as 6. For isomerization of vinyl palladium complexes, see: (a) Zargarian,
D.; Alper, H. Organometallics 1993, 12, 712. (b) de Vaal, P.; Dedieu, A.
J. Organomet. Chem. 1994, 478, 121. (c) Cacchi, S. J. Organomet. Chem.
1999, 576, 42. (d) Amatore, C.; Bensalem, S.; Ghalem, S.; Jutand, A. J.
Organomet. Chem. 2004, 689, 4642.
JA052175K
9
J. AM. CHEM. SOC. VOL. 127, NO. 27, 2005 9707