T. Doi et al. / Tetrahedron Letters 47 (2006) 1177–1180
1179
References and notes
O
HN
N
H
S
1. Masuoka, Y.; Nagai, A.; Shin-ya, K.; Furihata, K.; Nagai,
K.; Suzuki, K.; Hayakawa, Y.; Seto, H. Tetrahedron Lett.
2001, 42, 41–44.
a
OH
O
O
S
2
NH
2. (a) Ueda, H.; Nakajima, H.; Hori, Y.; Fujita, T.;
Nishimura, M.; Goto, T.; Okuhara, M. J. Antibiot.
1994, 47, 301–310; (b) Furumai, R.; Matsuyama, A.;
Kobashi, N.; Lee, K.-Y.; Nishiyama, M.; Nakajima, H.;
Tanaka, A.; Komatsu, Y.; Nishino, N.; Yoshida, M.;
Horinouchi, S. Cancer Res. 2002, 62, 4916–4921.
3. Li, K. W.; Wu, J.; Xing, W.; Simon, J. A. J. Am. Chem.
Soc. 1996, 118, 7237–7238.
4. (a) Yurek-George, A.; Habens, F.; Brimmell, M.; Pack-
ham, G.; Ganesan, A. J. Am. Chem. Soc. 2004, 126, 1030–
1031; (b) Davidson, S. M.; Townsend, P. A.; Carroll, C.;
Yurek-George, A.; Balasubramanyam, K.; Kundu, T. K.;
Stephanou, A.; Packham, G.; Ganesan, A.; Latchman, D.
S. Chem. BioChem. 2005, 6, 162–170.
HO
OH
O
b, a
13
1a
Scheme 4. Synthesis of 1a. Reagents and conditions: (a) I2, CH2Cl2–
MeOH (quant.); (b) MNBA (1.2 equiv), DMAP (2.4 equiv), CH2Cl2,
rt, 67%.
palladium-catalyzed reaction with morpholine to pro-
vide cyclization precursor 2.
5. Chen, Y.; Gambs, C.; Abe, Y.; Wentworth, P., Jr.; Janda,
K. D. J. Org. Chem. 2003, 68, 8902–8905.
Removal of trityl groups of 2 followed by disulfide for-
mation3,14 provided 13 in quantitative yield (Scheme 4).
The macrolactonization of 13 failed under various
attempts although molecular mechanics calculation
(MMFF) suggested that there would be an appropriate
conformation for the cyclization within 3 kcal/mol from
the global minimum.15 On the other hand, the macro-
6. (a) Hintermann, T.; Seebach, D. Helv. Chim. Acta 1998,
81, 2093–2126; (b) Gibson, C. L.; Gillon, K.; Cook, S.
Tetrahedron Lett. 1998, 39, 6733–6736; (c) Isobe, T.;
Fukuda, K. JP09143173, 1995; Chem. Abstr. 1997, 127,
50635.
7. Fukuzawa, S.; Matsuzawa, H.; Yoshimitsu, S. J. Org.
Chem. 2000, 65, 1702–1706.
lactonization of
2-methyl-6-nitrobenzoic
2
by the Shiina method using
8. (a) Evans, D. A.; McGee, L. R. Tetrahedron Lett. 1980,
21, 3975–3978; (b) Evans, D. A.; McGee, L. R. J. Am.
Chem. Soc. 1981, 103, 2876–2878; (c) Katsuki, T.; Yama-
guchi, M. Tetrahedron Lett. 1985, 26, 5807–5810.
9. (a) Nerz-Stormes, M.; Thornton, E. R. J. Org. Chem.
1991, 56, 2489–2498; (b) Yan, T.-H.; Hung, A.-W.; Lee,
H.-C.; Chang, C.-S.; Liu, W.-H. J. Org. Chem. 1995, 60,
3301–3306.
anhydride
(MNBA)16,17
efficiently proceeded at room temperature (67%) without
protection of the hydroxy group in the statine unit,
whereas the reported Yamaguchi method18 required
80 ꢁC and proceeded in 40% yield.4 Finally disulfide for-
mation between the di-S-trityl moieties furnished spiru-
chostatin (1a) in quantitative yield.4 The synthetic 1a
exhibited 1H and 13C NMR spectral data as well as opti-
cal rotation identical to those published for the natural
product.1,19
1
10. Spectral data of 6: H NMR (400 MHz, CDCl3) d 7.41–
7.19 (m, 15H), 5.59 (ddd, J = 15.5, 6.8, 6.3 Hz, 1H), 5.42
(dd, J = 15.5, 6.3 Hz, 1H), 4.45 (m, 1H), 2.55 (m, 2H),
2.21 (m, 2H), 2.09 (m, 2H); 13C NMR (100 MHz, CDCl3)
d 176.5, 144.9, 131.6, 130.7, 129.6, 127.9, 126.6, 68.5, 66.6,
41.1, 31.4, 31.3; IR (neat) 3417, 3056, 3030, 2925, 1713,
1595, 1489, 1444, 1280, 1183, 1101, 1083, 1034, 1002, 972,
In summary, we have completed a total synthesis of spiru-
chostatin A. Compared to the first synthesis,4 the pres-
ent route illustrates several new features. We have
demonstrated an asymmetric aldol reaction using the
Zr-enolate of acetyl N-oxazolidin-2-one derivative that
proceeds with high diastereoselectivity. The synthesis
of the statine involves a malonate condensation under
mild conditions, and the use of an allyl ester protecting
group was found to be compatible with highly function-
alized intermediates. Finally, the macrolactonization
was efficiently achieved with the Shiina reagent, and
provides another example of the utility of this method-
ology for such reactions. Interestingly, the macrolacton-
ization failed if performed after disulfide bond
formation, and this suggests that subtle conformational
differences exist between 2 and 13. A solid-phase synthe-
sis based on these results and its application toward a
combinatorial library of spiruchostatin analogues is
underway in our laboratory.
25
743, 700, 676, 621, 506 cmꢀ1; ½aꢁD ꢀ4.99 (c 1.55, CH2Cl2)
20
[lit.3 ½aꢁD ꢀ5.0 (c 2.0, CH2Cl2)], HRMS (ESI-
TOF) calcd for [C26H26O3+Na]+ 441.1500, found 441.1495.
11. Ohtani, I.; Kusumi, T.; Kashman, T.; Kakisawa, H. J.
Am. Chem. Soc. 1991, 113, 4092–4096.
12. Brooks, D. W.; Lu, L. D.-L.; Masamune, S. Angew.
Chem., Int. Ed. Engl. 1979, 18, 72–74.
13. (a) Jouin, P.; Poucet, J.; Dufour, M.-N.; Pantaloni, A.;
Castro, B. J. Org. Chem. 1989, 54, 617–627; (b) Harris, B.
´
D.; Joullie, M. M. Tetrahedron 1988, 44, 3489–3500.
14. Kamber, B.; Hartmann, A.; Eisler, K.; Riniker, B.; RInk,
H.; Siber, P.; Rittel, W. Helv. Chim. Acta 1980, 63,
899–915.
15. Macromodel (version 6.0) Mohamadi, F.; Richards, N. G.
J.; Guida, W. C.; Liskamp, R.; Lipton, M.; Caufield, C.;
Chang, G.; Hendrickson, T.; Still, W. C. J. Comput. Chem.
1990, 11, 440–467.
16. (a) Shiina, I.; Ibuka, R.; Kubota, M. Chem. Lett. 2002,
286–287; (b) Shiina, I.; Kubota, M.; Ibuka, R. Tetra-
hedron Lett. 2002, 43, 7535–7539; (c) Shiina, I.; Oshiumi,
H.; Hashizume, M.; Yamai, Y. S.; Ibuka, R. Tetrahedron
Lett. 2004, 45, 543–547; (d) Shiina, I.; Kubota, M.;
Oshiumi, H.; Hashizume, M. J. Org. Chem. 2004, 60,
1822–1830.
Acknowledgments
This work was supported by a Grant-In-Aid from the
Ministry of Education, Culture, Sports, Science and
Technology, Japan (No. 16350051).
17. Inoue, M.; Sasaki, T.; Hatano, S.; Hirama, M. Angew.
Chem., Int. Ed. 2004, 43, 6500–6505.