Figure 1. Structure of bryostatins 1-17.
number of creative synthetic approaches to various bryostatin
fragments are reported by Hale,9 Thomas,10 Hoffman,11
Vandewalle,12 and Burke.13
As part of a broad program in hydrogen-mediated C-C
bond formation,14 the catalytic reductive coupling of con-
jugated alkynes with carbonyl14f,g,k and imine14j partners was
recently reported from our laboratory. This reductive cou-
pling method was deemed applicable to the synthesis of the
bryostatin C-ring derivatives 8 and 9 on the following
basis: (a) the reductive coupling of 1,3-enynes to glyoxals
provides â,γ-unsaturated R-hydroxy ketonessan oxidation
pattern matching that found in C19-C21 of bryostatin 1 and
the majority of other bryostatins; (b) the geometry of the
trisubstituted alkene derived upon enyne-glyoxal reductive
coupling is consistent with the geometry of the alkylidene
moiety at C21 of the bryostatin C-ring; and finally, (c) through
the use of chirally modified rhodium catalysts, it should be
possible to address absolute stereochemistry. The following
retrosynthetic analysis, which involves the reductive coupling
of gloxal 2 to enyne 3 to afford the â,γ-unsaturated
R-hydroxy ketone 4, illustrates these features (Scheme 1).
(7) Reviews: (a) Wender, P. A.; Martin-Cantalejo, Y.; Carpenter, A. J.;
Chiu, A.; De Brabander, J.; Harran, P. G.; Jimenez, J.-M.; Koehler, M. F.
T.; Lippa, B.; Morrison, J. A.; Mu¨ller, S. G.; Mu¨ller, S. N.; Park, C.-M.;
Shiozaki, M.; Siedenbiedel, C.; Skalitsky, D. J.; Tanaka, M.; Irie, K. Pure
Appl. Chem. 1998, 70, 539. (b) Wender, P. A.; Hinkle, K. W.; Koehler, M.
F. T.; Lippa, B. Med. Res. ReV. 1999, 19, 388. (c) Wender, P. A.; Baryza,
J. L.; Brenner, S. E.; Clarke, M. O.; Gamber, G. G.; Horan, J. C.; Jessop,
T. C.; Kan, C.; Pattabiraman, K.; Williams, T. J. Pure Appl. Chem. 2003,
75, 143.
Scheme 1. Retrosynthetic Analysis of the Bryostatin C-Ring
via Hydrogen-Mediated Reductive Coupling
(8) Keck, G. E.; Truong, A. P. Org. Lett. 2005, 7, 2153.
(9) Review: Hale, K. J.; Hummersone, M. G.; Cai, J.; Manavaiazar, S.;
Bhatia, G. S.; Lennon, J. A.; Frigerio, M.; Delisser, V. M.; Chumnong-
saksarp, A.; Jogiya, N.; Lemaitre, A. Pure Appl. Chem. 2000, 72, 1659.
(10) Review: Baron, A.; Ball, M.; Bradshaw, B.; Donnelly, S.; Germay,
O.; Oller, P. C.; Kumar, N.; Martin, N.; O’Brien, M.; Omori, H.; Moore,
C.; Thomas, E. J. Pure Appl. Chem. 2005, 77, 103.
(11) (a) Lampe, T. F. J.; Hoffman, H. M. R. Chem. Commun. 1996, 1931.
(b) Lampe, T. F. J.; Hoffman, H. M. R. Tetrahedron Lett. 1996, 37, 7695.
(c) Weiss, J.; Hoffman, H. M. R. Tetrahedron: Asymmetry 1997, 8, 3913.
(d) Vakalopoulos, A.; Lampe, T. F. J.; Hoffman, H. M. R. Org. Lett. 2001,
3, 929. (e) Seidel, M. C.; Smits, R.; Stark, C. B. W.; Frackenpohl, J.;
Gaertzen, O.; Hoffman, H. M. R. Synthesis 2004, 1391.
(12) (a) De Brabander, J.; Vanhessche, K.; Vandewalle, M. Tetrahedron
Lett. 1991, 32, 2821. (b) De Brabander, J.; Vandewalle, M. Synlett 1994,
231. (c) De Brabander, J.; Vandewalle, M. Synthesis 1994, 855. (d) De
Brabander, J.; Kulkarni, A.; Garcia-Lopez, R.; Vandewalle, M. Tetrahe-
dron: Asymmetry 1997, 8, 1721.
To explore the feasibility of an enantioselective variant,
the reductive coupling of glyoxal 215 to enyne 3 using Rh-
(COD)2OTf (5 mol %) and Ph3CCO2H (5 mol %) as additive
at ambient temperature and pressure was performed in the
presence of assorted chiral phosphine ligands (Table 1).
Among the chiral ligands assayed, (R)-Tol-BINAP proved
superior. Through variation of the reaction temperature, 65
°C was identified as the ideal temperature, affording a 58%
yield of 4 in 78% enantiomeric excess (Table 1, entry 6).
Interestingly, a striking dependence of enantiomeric excess
upon the reaction temperature was observed. This result may
be explained by a Curtin-Hammett-type effect akin to that
observed in the asymmetric hydrogenation of dehydro-R-
amino acids, which also employs a cationic rhodium
catalyst.16 While use of Ph3CCO2H as a substoichiometric
(13) (a) Voight, E. A.; Seradj, H.; Roethle, P. A.; Burke, S. D. Org.
Lett. 2004, 6, 4045. (b) Voight, E. A.; Roethle, P. A.; Burke, S. D. J. Org.
Chem. 2004, 69, 4534.
(14) For hydrogen-mediated C-C bond formations developed in our
laboratory, see: (a) Jang, H.-Y.; Huddleston, R. R.; Krische, M. J. J. Am.
Chem. Soc. 2002, 124, 15156. (b) Huddleston, R. R.; Krische, M. J. Org.
Lett. 2003, 5, 1143. (c) Koech, P. K.; Krische, M. J. Org. Lett. 2004, 6,
691. (d) Marriner, G. A.; Garner, S. A.; Jang, H.-Y.; Krische, M. J. J. Org.
Chem. 2004, 69, 1380. (e) Jang, H.-Y.; Huddleston, R. R.; Krische, M.
Angew. Chem., Int. Ed. 2003, 42, 4074. (f) Jang, H.-Y.; Huddleston, R. R.;
Krische, M. J. J. Am. Chem. Soc. 2004, 126, 4664. (g) Huddleston, R. R.;
Jang, H.-Y. Krische, M. J. J. Am. Chem. Soc. 2003, 125, 11488. (h) Jang,
H.-Y.; Krische, M. J. J. Am. Chem. Soc. 2004, 126, 7875. (i) Jang, H.-Y.;
Hughes, F. W.; Gong, H.; Zhang, J.; Brodbelt, J. S.; Krische, M. J. Am.
Chem. Soc. 2005, 127, 6174. (j) Kong, J.-R.; Cho, C.-W.; Krische, M. J. J.
Am. Chem. Soc. 2005, 127, 11269. (k) Kong, J.-R.; Ngai, M.-Y.; Krische,
M. J. J. Am. Chem. Soc. 2006, 128, 718.
(15) The R-keto aldehyde 2 was prepared via oxidation of the corre-
sponding methyl ketone. See the Supporting Information for detailed
experimental procedures.
892
Org. Lett., Vol. 8, No. 5, 2006