K. L. Niece, E. Beniash, D. A. Harrington, J. A. Kessler and S. I. Stupp,
Science, 2004, 303, 1352.
2 X. J. Chen, J. C. Stendahl, M. S. Baker, X. M. Zhang, K. L. Niece,
S. I. Stupp and D. B. Kaufman, Cell Transplant., 2003, 12, 160;
S. Kiyonaka, K. Sada, I. Yoshimura, S. Shinkai, N. Kato and
I. Hamachi, Nat. Mater., 2004, 3, 58; B. G. Xing, C. W. Yu,
K. H. Chow, P. L. Ho, D. G. Fu and B. Xu, J. Am. Chem. Soc., 2002,
124, 14846; Z. M. Yang and B. Xu, Chem. Commun., 2004, 2424.
3 J. D. Hartgerink, E. Beniash and S. I. Stupp, Science, 2001, 294, 1684.
4 S. G. Zhang, T. C. Holmes, C. M. Dipersio, R. O. Hynes, X. Su and
A. Rich, Biomaterials, 1995, 16, 1385.
5 P. Terech and R. G. Weiss, Chem. Rev., 1997, 97, 3133; I. Yoshimura,
Y. Miyahara, N. Kasagi, H. Yamane, A. Ojida and I. Hamachi, J. Am.
Chem. Soc., 2004, 126, 12204; L. A. Estroff and A. D. Hamilton,
Angew. Chem., Int. Ed., 2000, 39, 3447; L. A. Estroff and
A. D. Hamilton, Chem. Rev., 2004, 104, 1201; J. H. Jung, Y. Ono,
K. Hanabusa and S. Shinkai, J. Am. Chem. Soc., 2000, 122, 5008;
F. M. Menger and K. L. Caran, J. Am. Chem. Soc., 2000, 122, 11679;
S. Kiyonaka, K. Sugiyasu, S. Shinkai and I. Hamachi, J. Am. Chem.
Soc., 2002, 124, 10954; H. Kobayashi, A. Friggeri, K. Koumoto,
M. Amaike, S. Shinkai and D. N. Reinhoudt, Org. Lett., 2002, 4, 1423;
Z. M. Yang, H. W. Gu, D. G. Fu, P. Gao, J. K. Lam and B. Xu, Adv.
Mater., 2004, 16, 1440; Z. M. Yang, H. W. Gu, Y. Zhang, L. Wang and
B. Xu, Chem. Commun., 2004, 208; Z. M. Yang, K. M. Xu, L. Wang,
H. W. Gu, H. Wei, M. J. Zhang and B. Xu, Chem. Commun., 2005,
4414; Y. Zhang, Z. M. Yang, F. Yuan, H. W. Gu, P. Gao and B. Xu,
J. Am. Chem. Soc., 2004, 126, 15028; S. Yamaguchi, I. Yoshimura,
T. Kohira, S. Tamaru and I. Hamachi, J. Am. Chem. Soc., 2005, 127,
11835; A. Heeres, C. Van der Pol, M. Stuart, A. Friggeri, B. L. Feringa
and J. Van Esch, J. Am. Chem. Soc., 2003, 125, 14252; K. J. C. van
Bommel, C. van der Pol, I. Muizebelt, A. Friggeri, A. Heeres,
A. Meetsma, B. L. Feringa and J. van Esch, Angew. Chem., Int. Ed.,
2004, 43, 1663; K. J. C. Van Bommel, M. C. A. Stuart, B. L. Feringa
and J. Van Esch, Org. Biomol. Chem., 2005, 3, 2917; S. Bhuniya,
S. M. Park and B. H. Kim, Org. Lett., 2005, 7, 1741; D. K. Kumar,
D. A. Jose, A. Das and P. Dastidar, Chem. Commun., 2005, 4059;
N. M. Sangeetha and U. Maitra, Chem. Soc. Rev., 2005, 34, 821;
A. M. Bieser and J. C. Tiller, Chem. Commun., 2005, 3942;
S. S. Mahajan, R. Paranji, R. Mehta, R. P. Lyon and W. M. Atkins,
Bioconjugate Chem., 2005, 16, 1019; A. R. Hirst and D. K. Smith,
Chem.–Eur. J., 2005, 11, 5496; M. Suzuki, S. Owa, M. Yumoto,
M. Kimura, H. Shirai and K. Hanabusa, Tetrahedron Lett., 2004, 45,
5399; M. Suzuki, S. Owa, M. Kimura, A. Kurose, H. Shirai and
K. Hanabusa, Tetrahedron Lett., 2005, 46, 303; M. Suzuki, M. Yumoto,
H. Shirai and K. Hanabusa, Org. Biomol. Chem., 2005, 3, 3073.
6 Y. Zhang, H. W. Gu, Z. M. Yang and B. Xu, J. Am. Chem. Soc., 2003,
125, 13680.
Fig. 4 Possible molecular arrangements in Gel I and Gel II. The possible
hydrogen bonds would allow supramolecular chains of (A) 1 and (C) 2;
CPK model of the supramolecular chains of (B) 1 and (D) 2.
intensity above 400 nm. The chain of 2 showed in Fig. 4C, D
should also be hydrophobic and tends to aggregate into nanofibers
with a range of widths. These supramolecular chains in Gel I or
Gel II further grow into a 3-D fibrillar matrix via self-assembly,
which traps the water molecules and leave spaces for the
incorporation of drug molecules within it and stopped the flow
of the liquid.
7 D. Seebach and J. L. Matthews, Chem. Commun., 1997, 2015.
8 H.-W. Jun, V. Yuwono, S. E. Paramonov and J. D. Hartgerink, Adv.
Mater., 2005, 17, 2612.
In summary, we have developed two novel hydrogels which
formed by self-assembly of the b-amino acid derivatives. In a
biological environment, this type of hydrogels should have
prolonged bioavailability in comparison with the hydrogels formed
by a-amino acid derivatives. Further work will focus on the use of
these hydrogels to incorporate and deliver therapeutic agents and
the examination of their stabilities in vitro and in vivo.
B. X. acknowledges the financial support from RGC
(Hong Kong) and EHIA (HKUST).
9 A. Giannis, Angew. Chem., Int. Ed. Engl., 1993, 32, 1244.
10 D. H. Appella, L. A. Christianson, I. L. Karle, D. R. Powell and
S. H. Gellman, J. Am. Chem. Soc., 1996, 118, 13071; D. Seebach,
S. Abele, K. Gademann, G. Guichard, T. Hintermann, B. Jaun,
J. L. Matthews and J. V. Schreiber, Helv. Chim. Acta, 1998, 81, 932;
D. F. Hook, P. Bindschadler, Y. R. Mahajan, R. Sebesta, P. Kast and
D. Seebach, Chem. Biodiversity, 2005, 2, 591; T. A. Martinek and
F. Fulop, Eur. J. Biochem., 2003, 270, 3657; E. A. Porter, X. F. Wang,
H. S. Lee, B. Weisblum and S. H. Gellman, Nature, 2000, 404, 565.
11 K. Hanabusa, J. Tange, Y. Taguchi, T. Koyama and H. Shirai, J. Chem.
Soc., Chem. Commun., 1993, 390.
12 S. Yao, U. Beginn, T. Gress, M. Lysetska and F. Wu¨rthner, J. Am.
Chem. Soc., 2004, 126, 8336.
Notes and references
1 T. C. Holmes, S. de Lacalle, X. Su, G. S. Liu, A. Rich and S. G. Zhang,
Proc. Natl. Acad. Sci. U. S. A., 2000, 97, 6728; G. A. Silva, C. Czeisler,
13 H. Ikeda, Y. Iidaka and A. Ueno, Org. Lett., 2003, 5, 1625.
14 P. Ertl, B. Rohde and P. Selzer, J. Med. Chem., 2000, 43, 3714.
740 | Chem. Commun., 2006, 738–740
This journal is ß The Royal Society of Chemistry 2006