R. Sanz, A. Martínez, J. M. Álvarez-Gutiérrez, F. Rodríguez
SHORT COMMUNICATION
Smith, L. A. Young, F. D. Toste, Org. Lett. 2004, 6, 1325–1327;
d) R. V. Ohri, A. T. Radosevich, K. J. Hrovat, C. Musich, D.
Huang, T. R. Holman, F. D. Toste, Org. Lett. 2005, 7, 2501–
2504.
tions, and applicability to the synthesis of some natural
products, together with the development of an asymmetric
version.
[7] After the submission of this paper, a related gold-catalyzed re-
action appeared see: M. Georgy, V. Boucard, J.-C. Campagne,
J. Am. Chem. Soc. 2005, 127, 14180–14181.
Experimental Section
[8] The ruthenium-catalyzed propargylic substitutions are believed
to proceed via allenylidene complex intermediates and so ter-
minal alkynes are required. For an interesting mechanistic
study, see: a) S. C. Ammal, N. Yoshikai, Y. Inada, Y. Nishibay-
ashi, E. Nakamura, J. Am. Chem. Soc. 2005, 127, 9428–9438.
However, a few examples involving the reactions of internal
alkynes have been reported: b) Y. Inada, Y. Nishibayashi, M.
Hidai, S. Uemura, J. Am. Chem. Soc. 2002, 124, 15172–15173;
c) Y. Nishibayashi, Y. Inada, M. Yoshikawa, M. Hidai, S. Ue-
mura, Angew. Chem. 2003, 115, 1533–1536; Angew. Chem. Int.
Ed. 2003, 42, 1495–1498; d) E. Bustelo, P. H. Dixneuf, Adv.
Synth. Catal. 2005, 347, 393–397.
General Procedure for PTS-Catalyzed Nucleophilic Substitutions of
Alkynols 1: A flask was charged with alkynol 1 (1 mmol), MeCN
(analytical grade, 5 mL) and the nucleophile (3 mmol for hetero-
atom nucleophiles and allyltrimethylsilane and 1.5 mmol for aro-
matics). PTS (5 mol-%) was added and the flask was heated at
80 °C. Reaction mixtures were maintained at reflux until comple-
tion as judged by TLC or GC-MS analysis of the mixture. The
solvent was removed under reduced pressure and the residue was
then purified by column chromatography (silica gel; hexane/ethyl
acetate), affording the corresponding product.
[9] a) R. Sanz, R. Aguado, M. R. Pedrosa, F. J. Arnáiz, Synthesis
2002, 856–858; b) R. Sanz, J. Escribano, R. Aguado, M. R.
Pedrosa, F. J. Arnáiz, Synthesis 2004, 1629–1632; c) R. Sanz, J.
Escribano, Y. Fernández, R. Aguado, M. R. Pedrosa, F. J. Ar-
náiz, Synlett 2005, 1389–1392.
[10] Although the reactions were conducted with 3 equiv. of the
corresponding nucleophile and 5 mol-% of PTS in acetonitrile
at reflux, we have observed that the reaction also takes place
at room temperature, with the catalyst loading decreased to
1 mol-% and with use of only 1 equiv. of nucleophile. Under
these conditions longer reaction times were required for com-
plete conversions.
[11] The Meyer–Schuster rearrangement usually needs strong acids
or metals as catalysts and elevated temperatures: a) S. Swanina-
than, K. V. Narayanan, Chem. Rev. 1971, 71, 429–438; b) C. Y.
Lorber, J. A. Osborn, Tetrahedron Lett. 1996, 37, 853–856; c)
T. Suzuki, M. Tokunaga, Y. Wakatsuki, Tetrahedron Lett. 2002,
43, 7531–7533.
Supporting Information (for details see the footnote on the first
page of this article): Experimental procedures and spectroscopic
data for all compounds and copies of the NMR spectra of the
crude product obtained from the multigram reaction between 1b
and methanol.
Acknowledgments
We gratefully thank the Ministerio de Educación y Ciencia and
FEDER (CTQ2004-08077-C02-02/BQU) for financial support.
A. M. thanks the Universidad de Burgos for a predoctoral fellow-
ship. F. R. and J. M. A. G. are grateful to the Ministerio de Educa-
ción y Ciencia of Spain (“Ramón y Cajal” contracts).
[1] O. Mitsunobu, in: Comprehensive Organic Synthesis, vol. 6
(Eds.: B. M. Trost, I. Fleming), Pergamon Press, New York,
1991, pp. 22–28 and 65–76.
[12]
Use of longer reaction times at room temp. (48 h) resulted in
complete conversion of the initially formed ether 2w to the cor-
responding rearranged α,β-unsaturated carbonyl derivative
(Meyer–Schuster rearrangement).
[2] a) K. M. Nicholas, Acc. Chem. Res. 1987, 20, 207–214; b)
A. J. M. Caffyn, K. M. Nicholas, in: Comprehensive Organome-
tallic Chemistry II, vol. 12 (Eds.: E. W. Abel, G. A. Stone, G.
Wilkinson), Pergamon, New York, 1995, chapter 7.1; c) B. J.
Teobald, Tetrahedron 2002, 58, 4133–4170.
[13] Enantio-enriched 1a was prepared in accordance with: M. M.
Midland, A. Tramontano, A. Kazubski, R. S. Graham, D. J. S.
Tsai, D. B. Cardin, Tetrahedron 1984, 40, 1371–1380.
[14] For a review on alkynyl carbenium ions see: S. M. Lukyanov,
A. V. Koblik, L. A. Muradyan, Russ. Chem. Rev. 1998, 67, 817–
856.
[15] PPTS-catalyzed propargylation of phenols and naphthols re-
sults in the formation of benzopyran derivatives: W. Zhao,
E. M. Carreira, Org. Lett. 2003, 5, 4153–4154.
[16] 1H and 13C NMR spectra of the crude product obtained from
this multigram reaction are included in the Supporting Infor-
mation.
[17] Other nucleophiles used in related works, such as diphenyl-
phosphane oxide or enol silyl ethers, are being studied in our
laboratories; a full detailed account will be provided in due
course.
[18] For a patent on the direct propargylic substitution in the pres-
ence of rhenium complexes as catalysts, see: F. D. Toste, U. S.
Pat. Appl. Publ. 2004, US2004181094 [Chem. Abstr. 2004, 141,
277341].
[3] T. J. Müller, Eur. J. Org. Chem. 2001, 2021–2033.
[4] Interesting related Lewis acid-catalyzed propargylic substitu-
tion reactions of silyl propargyl ethers have recently been pub-
lished: a) T. Ishikawa, M. Okano, T. Aikawa, S. Saito, J. Org.
Chem. 2001, 66, 4635–4642; b) T. Ishikawa, S. Manabe, T. Ai-
kawa, T. Kudo, S. Saito, Org. Lett. 2004, 6, 2361–2364.
[5] a) Y. Nishibayashi, I. Wakiji, M. Hidai, J. Am. Chem. Soc.
2000, 122, 11019–11020; b) Y. Nishibayashi, I. Wakiji, Y. Ishii,
S. Uemura, M. Hidai, J. Am. Chem. Soc. 2001, 123, 3393–3394;
c) Y. Nishibayashi, M. Yoshikawa, Y. Inada, M. Hidai, S. Ue-
mura, J. Am. Chem. Soc. 2002, 124, 11846–11847; d) Y. Nishi-
bayashi, Y. Inada, M. Hidai, S. Uemura, J. Am. Chem. Soc.
2003, 125, 6060–6061; e) V. Cadierno, J. Díez, S. E. García-
Garrido, J. Gimeno, Chem. Commun. 2004, 2716; f) Y. Nishi-
bayashi, M. D. Milton, Y. Inada, M. Yoshikawa, I. Wakiji, M.
Hidai, S. Uemura, Chem. Eur. J. 2005, 11, 1433–1451.
[6] a) B. D. Sherry, A. T. Radosevich, F. D. Toste, J. Am. Chem.
Soc. 2003, 125, 6076–6077; b) M. R. Luzung, F. D. Toste, J.
Am. Chem. Soc. 2003, 125, 15760–15761; c) J. J. Kennedy-
Received: December 8, 2005
Published Online: January 26, 2006
1386
www.eurjoc.org
© 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2006, 1383–1386