Brief Articles
Journal of Medicinal Chemistry, 2006, Vol. 49, No. 11 3425
(7) (a) Lane, R. M.; Potkin, S. G.; Enz, A. Targeting acetylcholinesterase
and butyrylcholinesterase in dementia. Int J. Neuropsychopharmacol.
2006, 1, 101-124. (b) Bartorelli, L.; Giraldi, C.; Saccardo, M.;
Cammarata, S.; Bottini, G.; Fasanaro, A. M.; Trequattrini, A. Effects
of switching from an AChE inhibitor to a dual AchE-BuChE
inhibitor in patients with Alzheimer’s disease. Curr. Med. Res. Opin.
2005, 11, 1809-1818.
(8) Jiang, H.; Luo, X.; Bai, D. Progress in clinical, pharmacological,
chemical and structural biological studies of huperzine A: A drug
of traditional Chinese medicine origin for the treatment of Alzhe-
imer’s disease. Curr. Med. Chem. 2003, 10, 2231-2252.
(9) Pang, Y.-P.; Quiram, P.; Jelacic, T.; Hong, F. Highly potent, selective,
and low cost bis-tetrahydroaminacrine inhibitors of acetylcholinest-
erase. Steps toward novel drugs for treating Alzheimer’s disease. J.
Biol. Chem. 1996, 271, 23646-23649.
(10) Savini, L.; Gaeta, L.; Fattorusso, C.; Catalanotti, B.; Campiani, G.;
Chiasserini, L.; Pellerano, C.; Novellino, E.; McKissic, D.; Saxena,
A. Specific targeting of acetylcholinesterase and butyrylcholinesterase
recognition sites. Rational design of novel, selective, and highly potent
cholinesterase inhibitors. J. Med. Chem. 2003, 46, 1-4.
(11) Campiani, G.; Fattorusso, C.; Butini, S.; Gaeta, A.; Agnusdei, M.;
Gemma, S.; Persico, P.; Catalanotti, B.; Savini, L.; Nacci, V.;
Novellino, E.; Holloway, W.; Greig, N. H.; Belinskaya, T.; Fedorko,
J. M.; Saxena, A. Development of molecular probes for the
identification of extra interaction sites in the mid-gorge and peripheral
sites of butyrylcholinesterase (BuChE). Rational design of novel,
selective, and highly potent BuChE inhibitors. J. Med. Chem. 2005,
48, 1919-1929.
(12) (a) Campiani, G.; Sun, L. Q.; Kozikowski, A. P.; Aagaard, P.;
McKinney, M. A palladium-catalyzed route to huperzine A and its
analogues and their anticholinesterase activity. J. Org. Chem. 1993,
58, 7660-7669. (b) Kozikowski, A. P.; Campiani, G.; Sun, L.-Q.;
Wang, S.; Saxena, A.; Doctor, B. P. Identification of a more potent
analogue of the naturally occurring alkaloid huperzine A. Predictive
molecular modeling of its interaction with AChE. J. Am. Chem. Soc.
1996, 118, 11357-11362. (c) Kozikowski, A. P.; Campiani, G.;
Tu¨ckmantel, W. An approach to open chain modified heterocyclic
analogues of the acetylcholinesterase inhibitor, Huperzine A, through
a bicyclo[3.3.1]nonane intermediate. Heterocycles 1994, 39, 101-
116. (d) Gemma, S.; Butini, S.; Fattorusso, C.; Fiorini, I.; Nacci, V.;
McKissic, D.; Saxena, A.; Campiani, G. A palladium-catalyzed
synthetic approach to new huperzine A analogues modified at the
pyridone ring. Tetrahedron 2003, 59, 87-93.
(13) Camps, P.; Cusack, B.; Mallender, W. D.; El Achab, R.; Morral, J.;
Munoz, D. T.; Rosenberry, T. L. Huprine X is a novel high-affinity
inhibitor of acetylcholinesterase that is of interest for treatment of
Alzheimer’s disease. Mol. Pharmacol. 2000, 57, 409-417.
(14) Carlier, P. R.; Du, D.-M.; Han, Y.; Liu, J.; Pang, Y.-P. Potent, easily
synthesized huperzine A-tacrine hybrid acetylcholinesterase inhibi-
tors. Bioorg. Med. Chem. Lett. 1999, 9, 2335-2338.
(15) Nelson, L. A. K.; Shaw, A. C.; Abrams, S. R. Synthesis of (+)-,
(-)-, and (()-7′-hydroxyabscisic acid. Tetrahedron 1991, 47, 3259-
3270.
(16) Mander, L. N.; Sethi, S. P. Regioselective synthesis of â-ketoesters
from lithium enolates and methyl cyanoformate. Tetrahedron Lett.
1983, 5425-5428.
(17) Sreeknmar, C.; Darst, K. P.; Still, W. C. A direct synthesis of
Z-trisubstituted allylic alcohols via the Wittig reaction. J. Org. Chem.
1980, 45, 4260-4262.
(18) Carlier, P. R.; Chow, E. S.-H.; Han, Y.; Liu, J.; Yazal, J.; Pang,
Y.-P. Heterodimeric tacrine-based acetylcholinesterase inhibitors:
Investigating ligand-peripheral site interactions. J. Med. Chem. 1999,
42, 4225-4231.
(19) Wagermann, R.; Vilsmaier, E.; Maas, G. Spatially fixed oligoamines
IV. 1 flexibility and protonation of meander-type octamines. Tetra-
hedron 1995, 8815-8826.
by flash chromatography eluting with a 20:1:1 mixture of ethyl
acetate, methanol, and ammonium hydroxide (30%) to afford 10.0
mg (26%) of a carbamate intermediate as a colorless oil: ESI-MS
m/z 545 [M + H]+, 513 (100), 470, 338, 312, 295, 199. To a
solution of the above carbamate (10 mg, 0.018 mmol) in dry
chloroform (0.5 mL) was added iodotrimethylsilane (15.6 µL, 0.11
mmol), and the resulting mixture was heated under reflux for 5 h.
After cooling to room temperature, the solvent was removed in
vacuo, the residue was dissolved in dry methanol (1 mL) and the
solution was heated under reflux. After 18 h the solvent was
removed and the residue was purified by flash chromatography
eluting with a 20:1:1 mixture of ethyl acetate, methanol, and
ammonium hydroxide (30%) to obtain 1.1 mg (12%) of 5b as a
colorless oil: 1H NMR (CDCl3 + D2O) δ 7.93-7.91 (m, 2H),
7.55-7.53 (m, 1H), 7.30-7.27 (m, 1H), 5.36-5.28 (m, 2H), 3.68-
3.60 (m, 3H), 3.51 (t, J ) 8.0 Hz, 2H), 3.15-2.87 (m, 3H), 2.75-
2.51 (m, 6H), 2.31-2.22 (m, 2H), 2.03-1.75 (m, 4H), 1.60-1.52
(m, 6H), 1.51-1.22 (m, 10H); ESI-MS m/z 487 (M + H)+. Anal.
(C32H46N4) C, H, N.
(9E)-7-(7-(1,2,3,4-Tetrahydroacridin-9-ylamino)heptylamino)-
9-ethylidene-3-methylbicyclo[3.3.1]non-3-ene-1-carboxylic Acid
Methyl Ester (5c). Reductive amination of ketone 15 and N-(7-
aminoheptyl)-1,2,3,4-tetrahydroacridin-9-amine18 was performed as
described for the synthesis of 5b to afford the title compound 5c
in 23% yield as a colorless oil: 1H NMR (CDCl3 + D2O) δ 7.96-
7.89 (m, 2H), 7.57-7.50 (m, 1H), 7.37-7.29 (m, 1H), 5.47-5.37
(m, 1H), 4.91-4.87 (m, 1H), 3.73 (s, 3H), 3.47 (t, J ) 6.9 Hz,
2H), 3.28-3.15 (m, 3H), 3.05-2.97 (m, 2H), 2.77-2.55 (m, 4H),
2.50-2.47 (m, 3H), 2.34-2.20 (m, 2H), 1.97-1.90 (m, 4H), 1.65-
1.57 (m, 6H), 1.41-1.21 (m, 10H); ESI-MS m/z 530 (M + H)+.
Anal. (C34H47N3O2) C, H, N.
Acknowledgment. Authors thank MIUR (Roma) for finan-
cial support. The opinions or assertions contained herein are
the private views of the authors and are not to be construed as
official or as reflecting the views of the United States Army or
Department of Defense.
Supporting Information Available: Experimental details for
13 and molecular modeling and pharmacology for 5a-c. This
material is available free of charge via the Internet at http://
pubs.acs.org.
References
(1) Gentry, M. K.; Doctor, B. P. In Cholinesterases: Structure, function,
mechanism, genetics, and cell biology; Massoulie, J., Bacou, F.,
Barnard, E. A., Chatonnet, A., Doctor, B. P., Eds.; American
Chemical Society: Washington, DC, 1991; pp 394-398.
(2) Saxena, A.; Redman, A. M. G.; Jiang, X.; Lockridge, O.; Doctor, B.
P. Differences in active site gorge dimension of cholinesterases
revealed by binding of inhibitors to human butyrylcholinesterase.
Biochemistry 1997, 36, 14642-14651.
(3) Giacobini, E. Cholinergic functions in Alzheimer’s disease. Int. J.
Geriatr. Psychiatry 2003, 18, S1-S5, and references therein.
(4) Greig, N. H.; Utsuki, T.; Yu, Q.-S.; Zhu, X.; Holloway, H. W.; Perry,
T.; Lee, B.; Ingram, D. K.; Lahiri, D. K. A new therapeutic target in
Alzheimer’s disease treatment: Attention to butyrylcholinesterase.
Curr. Med. Res. Opin. 2001, 17, 1-6.
(5) Mesulam, M. M.; Guillozet, A.; Shaw, P.; Levey, A.; Duysen, E.
G.; Lockridge, O. Acetylcholinesterase knockouts establish central
cholinergic pathways and can use butyrylcholinesterase to hydrolyse
acetylcholine. Neuroscience 2002, 110, 627-639.
(6) Kuhl, D. E.; Koeppe, R. A.; Snyder, S. E.; Minoshima, S.; Frey, K.
A.; Kilbourn, M. R. In vivo butyrylcholinesterase activity is not
increased in Alzheimer’s disease synapses. Ann. Neurol. 2006, 59,
13-20.
JM060257T