Z. Pan et al. / Bioorg. Med. Chem. Lett. 16 (2006) 2882–2885
2885
8. Ossovskaya, V. S.; Bunnett, N. W. Physiol. Rev. 2004, 84,
579; Pawlinski, R.; Mackman, N. Crit. Care Med. 2004,
32, S293.
and 5 can be used to study the cellular b-tryptase’s
activity upon biological stimulation.
9. Internal data; see also Ni, L.-M.; Powers, J. C. Bioorg.
Med. Chem. 1998, 6, 1767.
10. Powers, J. C.; Asgian, J. L.; Ekici, O. D.; James, K. E.
Chem. Rev. 2002, 102, 4639.
11. Hawthorne, S.; Hamilton, R.; Walker, B. J.; Walker, B.
Anal. Biochem. 2004, 326, 273.
In summary, we have demonstrated the design, synthesis,
and application of selective trypsin-family protease-selec-
tive probes 3, 4, and 5. These probes are capable of specif-
ically labeling trypsin-like serine proteases either in their
pure forms or as components of complex proteomes.
Thus, these probes represent powerful biochemical tools
for monitoring the activity of proteases in their natural
environment. Attachment of other reporter groups such
as fluorophores may also allow imaging of protease activ-
ity in situ as recently described for cysteine proteases.16
Finally, probes that target other sub-families of serine
proteases can be designed using a similar approach.
Increasing the number and type of chemical proteomics
probes targeting serine proteases will significantly en-
hance our ability to understand the activity, regulation,
and function of these important enzymes.
12. Harris, J. L.; Niles, A.; Burdick, K.; Maffitt, M.; Backes,
B. J.; Ellman, J. A.; Kuntz, I.; Haak-Frendscho, M.;
Craik, C. S. J. Biol. Chem. 2001, 276, 34941; Jackson, D.
S.; Fraser, S. A.; Ni, L. M.; Kam, C. M.; Winkler, U.;
Johnson, D. A.; Froelich, C. J.; Hudig, D.; Powers, J. C.
J. Med. Chem. 1998, 41, 2289.
13. Inhibition profiles for the serine proteases were generated
by incubating each enzyme in the presence of probes
(various concentrations) or 10% DMSO (vehicle control)
for 30 min in 96-well clear polystyrene plates at room
temperature prior to the addition of substrate. Enzyme
activity was measured by monitoring the hydrolysis of the
synthetic substrate tosyl-Gly-Pro-Lys-para-nitroanilide at
405 nM over 5 min using a UV/MAX kinetic plate reader
(Molecular Devices). The apparent inhibition constants
[Ki(app)] were calculated from the progress curves using the
software package Batch Ki (BioKin, Ltd). In each case, the
substrate concentration was at or below the Km for the
enzyme.
References and notes
1. Saghatelian, A.; Cravatt, B. Nat. Chem. Biol. 2005, 1, 130.
2. Jeffery, D. A.; Bogyo, M. Curr. Opin. Biotechnol. 2003, 14,
87; Adam, G. C.; Cravett, B. F.; Sorensen, E. J. Nat.
Biotechnol. 2002, 20, 805.
3. Liu, Y.; Patricelli, M. P.; Cravatt, B. F. Proc. Natl. Acad.
Sci. U.S.A. 1999, 96, 14694.
14. Benoist, C.; Mathis, D. Nature 2002, 420, 875.
15. The following hydrolases were identified by LC/MS/MS
analysis (Q-Star) (serine protease in bold). Secreted
4. Greenbaum, D.; Medzihradszky, K. F.; Burlingame, A.;
Bogyo, M. Chem. Biol. 2000, 7, 569.
5. Kumar, S.; Zhou, B.; Liang, F.; Wang, W.-Q.; Huang, Z.;
Zhang, Z.-Y. Proc. Natl. Acad. Sci. U.S.A. 2004, 101,
7943.
6. Liu, Y.; Shreder, K. R.; Gai, W.; Corral, S.; Ferris, D. K.;
Rosenblum, J. S. Chem. Biol. 2005, 12, 99; Yee, M.-C.;
Fas, S. C.; Stohlmeyer, M. M.; Wandless, T. J.; Cimprich,
K. A. J. Biol. Chem. 2005, 280, 29053; Cohen, M. S.;
Zhang, C.; Shokat, K.; Taunton, J. Science 2005, 308,
1318.
7. Greenbaum, D. C.; Baruch, A.; Grainger, M.; Bozdech,
Z.; Medzihradszky, K. F.; Engel, J.; DeRisi, J.; Holder, A.
A.; Bogyo, M. Science 2002, 298, 2002; Jessani, N.; Liu,
Y.; Humphrey, M.; Cravatt, B. F. Proc. Natl. Acad. Sci.
U.S.A. 2002, 99, 10335.
serine hydrolases: dipeptidyl peptidase
7 (54 kDa);
esterase 10 (37 kDa); tryptase b1 (34 kDa); lysophos-
pholipase 2 (24 kDa); platelet-activating factor acetyl-
hydrolase (26 kDa). Membrane serine hydrolases:
oxidized protein hydrolase (82 kDa); prolyl endopepti-
dase (81 kDa); angiotensinase C/propylcarboxypeptidase
(56 kDa); retinoid-inducible serine carboxypeptidase
(51 kDa); KIAA1363/carboxy esterase (48 kDa); perox-
isomal acyl-coenzyme A thioesterhydrolase 2a (46 kDa);
aldolase A (39 kDa); protein FLJ11342/lipase (32 kDa);
similar to hypothetical protein 4833421E05Rik/lipase
(28kDa); OVCA2/tumor suppressor in ovarian cancer 2
(25 kDa).
16. Joyce, J. A.; Baruch, A.; Chehade, K.; Meyer-Morse, N.;
Giraudo, E.; Tsai, F. Y.; Greenbaum, D. C.; Hager, J. H.;
Bogyo, M.; Hanahan, D. Cancer Cell 2004, 5, 443.