Organic Letters
ORCID
Letter
(6) For examples, see: (a) Nishibayashi, Y.; Wakiji, I.; Hidai, M. J.
Am. Chem. Soc. 2000, 122, 11019. (b) Nishibayashi, Y.; Wakiji, I.;
Ishii, Y.; Uemura, S.; Hidai, M. J. Am. Chem. Soc. 2001, 123, 3393.
(c) Sakata, K.; Nishibayashi, Y. Catal. Sci. Technol. 2018, 8, 12 and
also see refs 4d and 13.
(7) (a) Smith, S. W.; Fu, G. C. J. Am. Chem. Soc. 2008, 130, 12645.
(b) Motoyama, K.; Ikeda, M.; Miyake, Y.; Nishibayashi, Y. Eur. J. Org.
Chem. 2011, 2011, 2239. (c) Sinisi, R.; Vita, M. V.; Gualandi, A.;
Emer, E.; Cozzi, P. G. Chem. - Eur. J. 2011, 17, 7404. (d) Oelke, A. J.;
Sun, J.; Fu, G. C. J. Am. Chem. Soc. 2012, 134, 2966. For copper-
catalyzed stereospecific propargylic arylation of chiral propargylic
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported by a Grant-in-Aid for Scientific
Research (C) from the Japan Society for the Promotion of
Science (17K05794). We thank Mr. Mikihiro Saito (Nihon
university) for his experimental support.
́
ammonium salts bearing an internal alkyne group, see: (e) Guisan-
Ceinos, M.; Martín-Heras, V.; Tortosa, M. J. Am. Chem. Soc. 2017,
139, 8448.
(8) For examples, see: (a) Porco, J. A., Jr.; Schoenen, F. J.; Stout, T.
J.; Clardy, J.; Schreiber, S. L. J. Am. Chem. Soc. 1990, 112, 7410.
(b) Nicolaou, K. C.; Hwang, C. K.; Smith, A. L.; Wendeborn, S. V. J.
Am. Chem. Soc. 1990, 112, 7416. (c) Jiang, B.; Xu, M. Angew. Chem.,
Int. Ed. 2004, 43, 2543. (d) Fleming, J. J.; Du Bois, J. J. Am. Chem. Soc.
2006, 128, 3926 and also see ref 4e.
(9) The asymmetric alkynylation of imines is also an efficient
approach to chiral propargylic amines. For reviews, see: (a) Zani, L.;
Bolm, C. Chem. Commun. 2006, 4263. (b) Trost, B. M.; Weiss, A. H.
Adv. Synth. Catal. 2009, 351, 963. (c) Blay, G.; Monleon, A.; Pedro, J.
R. Curr. Org. Chem. 2009, 13, 1498.
REFERENCES
■
(1) For selected reviews, see: (a) Miyake, Y.; Uemura, S.;
Nishibayashi, Y. ChemCatChem 2009, 1, 342. (b) Detz, R. J.;
Hiemstra, H.; van Maarseveen, J. H. Eur. J. Org. Chem. 2009, 2009,
6263. (c) Nishibayashi, Y. Synthesis 2012, 2012, 489. (d) Zhang, D.-
Y.; Hu, X.-P. Tetrahedron Lett. 2015, 56, 283.
(2) Nishibayashi, Y.; Onodera, G.; Inada, Y.; Hidai, M.; Uemura, S.
Organometallics 2003, 22, 873.
(3) For selected examples of alkylation, see: (a) Nishibayashi, Y.;
Imajima, H.; Onodera, G.; Uemura, S. Organometallics 2005, 24,
4106. (b) Inada, Y.; Nishibayashi, Y.; Uemura, S. Angew. Chem., Int.
Ed. 2005, 44, 7715. (c) Fukamizu, K.; Miyake, Y.; Nishibayashi, Y. J.
Am. Chem. Soc. 2008, 130, 10498. For selected examples of arylation,
see: (d) Matsuzawa, H.; Miyake, Y.; Nishibayashi, Y. Angew. Chem.,
Int. Ed. 2007, 46, 6488. (e) Matsuzawa, H.; Kanao, K.; Miyake, Y.;
Nishibayashi, Y. Org. Lett. 2007, 9, 5561. (f) Kanao, K.; Miyake, Y.;
Nishibayashi, Y. Organometallics 2009, 28, 2920.
(10) For palladium-catalyzed stereospecific propargylic amination of
chiral propargylic alcohol derivatives bearing an internal alkyne group,
see: (a) Marshall, J. A.; Wolf, M. A. J. Org. Chem. 1996, 61, 3238.
(b) Daniels, D. S. B.; Jones, A. S.; Thompson, A. L.; Paton, R. S.;
Anderson, E. A. Angew. Chem., Int. Ed. 2014, 53, 1915.
(11) For examples, see: (a) Elsevier, C. J.; Stehouwer, P. M.;
Westmijze, H.; Vermeer, P. J. Org. Chem. 1983, 48, 1103. (b) Elsevier,
C. J.; Kleijn, H.; Boersma, J.; Vermeer, P. Organometallics 1986, 5,
716. (c) Yoshida, M.; Gotou, T.; Ihara, M. Tetrahedron Lett. 2004, 45,
5573 and references cited therein, and also see ref 10a.
(4) For selected examples of amination, see: (a) Detz, R. J.; Delville,
M. M. E.; Hiemstra, H.; van Maarseveen, J. H. Angew. Chem., Int. Ed.
2008, 47, 3777. (b) Hattori, G.; Matsuzawa, H.; Miyake, Y.;
Nishibayashi, Y. Angew. Chem., Int. Ed. 2008, 47, 3781. (c) Hattori,
G.; Yoshida, A.; Miyake, Y.; Nishibayashi, Y. J. Org. Chem. 2009, 74,
7603. (d) Hattori, G.; Sakata, K.; Matsuzawa, H.; Tanabe, Y.; Miyake,
Y.; Nishibayashi, Y. J. Am. Chem. Soc. 2010, 132, 10592. (e) Detz, R.
J.; Abiri, Z.; le Griel, R.; Hiemstra, H.; van Maarseveen, J. H. Chem. -
Eur. J. 2011, 17, 5921. (f) Zhang, C.; Wang, Y.-H.; Hu, X.-H.; Zheng,
Z.; Xu, J.; Hu, X.-P. Adv. Synth. Catal. 2012, 354, 2854. (g) Mino, T.;
Taguchi, H.; Hashimoto, M.; Sakamoto, M. Tetrahedron: Asymmetry
2013, 24, 1520. (h) Zou, Y.; Zhu, F.-L.; Duan, Z.-C.; Wang, Y.-H.;
Zhang, D.-Y.; Cao, Z.; Zheng, Z.; Hu, X.-P. Tetrahedron Lett. 2014,
55, 2033. (i) Shibata, M.; Nakajima, K.; Nishibayashi, Y. Chem.
Commun. 2014, 50, 7874. For examples of etherfication, see:
(j) Nakajima, K.; Shibata, M.; Nishibayashi, Y. J. Am. Chem. Soc. 2015,
137, 2472. (k) Shao, L.; Zhang, D.-Y.; Wang, Y.-H.; Hu, X.-P. Adv.
Synth. Catal. 2016, 358, 2558. For selected examples of alkylation,
see: (l) Fang, P.; Hou, X.-L. Org. Lett. 2009, 11, 4612. (m) Zhu, F.-L.;
Wang, Y.-H.; Zhang, D.-Y.; Hu, X.-H.; Chen, S.; Hou, C.-J.; Xu, J.;
Hu, X.-P. Adv. Synth. Catal. 2014, 356, 3231. (n) Zhao, L.; Huang, G.;
Guo, B.; Xu, L.; Chen, J.; Cao, W.; Zhao, G.; Wu, X. Org. Lett. 2014,
16, 5584. (o) Zhu, F.-L.; Zou, Y.; Zhang, D.-Y.; Wang, Y.-H.; Hu, X.-
H.; Chen, S.; Xu, J.; Hu, X.-P. Angew. Chem., Int. Ed. 2014, 53, 1410.
(p) Han, F.-Z.; Zhu, F.-L.; Wang, Y.-H.; Zou, Y.; Hu, X.-H.; Chen, S.;
Hu, X.-P. Org. Lett. 2014, 16, 588. (q) Huang, G.; Cheng, C.; Ge, L.;
Guo, B.; Zhao, L.; Wu, X. Org. Lett. 2015, 17, 4894. (r) Shao, L.; Hu,
X.-P. Chem. Commun. 2017, 53, 8192. For examples of arylation, see:
(s) Tsuchida, K.; Senda, Y.; Nakajima, K.; Nishibayashi, Y. Angew.
Chem., Int. Ed. 2016, 55, 9728. (t) Shao, L.; Hu, X.-P. Org. Biomol.
Chem. 2017, 15, 9837.
(12) We propose the formation of η1-allenylnickel species based on
the studies of η1-allenylpalladium and η1-allenylplatinum species; see:
(a) Kurosawa, H.; Ogoshi, S. Bull. Chem. Soc. Jpn. 1998, 71, 973.
(b) Chen, J.-T. Coord. Chem. Rev. 1999, 190-192, 1143. (c) Wojcicki,
A. Inorg. Chem. Commun. 2002, 5, 82.
(13) Nishibayashi, Y.; Yoshikawa, M.; Inada, Y.; Hidai, M.; Uemura,
S. J. Am. Chem. Soc. 2002, 124, 11846 and references cited therein.
(14) We also carried out the reaction of rac-1a with 2a in the
presence of 2.5 mol % of Ni(cod)2 and 5 mol % of (R)-SEGPHOS in
tAmOH at 60 °C for 6 h to give (R)-3aa in 41% yield with 95% ee
(52% conversion). We confirmed that the enantiomeric excess of
recovered 1a was 3%.
(15) Ogoshi, S.; Nishida, T.; Shinagawa, T.; Kurosawa, H. J. Am.
Chem. Soc. 2001, 123, 7164.
(16) Schley, N. D.; Fu, G. C. J. Am. Chem. Soc. 2014, 136, 16588.
(5) For exceptional examples, see: (a) Kondo, T.; Kanda, Y.; Baba,
A.; Fukuda, K.; Nakamura, A.; Wada, K.; Morisaki, Y.; Mitsudo, T. J.
Am. Chem. Soc. 2002, 124, 12960. (b) Inada, Y.; Nishibayashi, Y.;
Hidai, M.; Uemura, S. J. Am. Chem. Soc. 2002, 124, 15172. (c) Yu, Y.-
B.; Luo, Z.-J.; Zhang, X. Org. Lett. 2016, 18, 3302.
D
Org. Lett. XXXX, XXX, XXX−XXX