A. J. Roecker et al. / Bioorg. Med. Chem. Lett. 17 (2007) 5677–5682
5681
7. Jacobson, R. M.; Eur. Pat. Appl., 1985, EP 153127 A2.
analyses. The authors also thank Maricel Torrent for
assistance with the figures in this manuscript.
8. KSP inhibitory activity was measured using a standard
ATPase assay. IC50 values are reported as averages of at
least two determinations; standard deviations are 25–
50%.
9. Mitotic arrest was measured by assessing the mitosis
specific phosphorylation of nucleolin using an antibody-
coated, bead-based assay. In this assay, total nucleolin is
captured on a streptavidin-coated paramagnetic bead
coupled with biotinylated nucleolin monoclonal IgG1
antibody 4E2 (Research Diagnostics, Inc.). Nucleolin
phosphorylation is detected by an antibody complex
consisting of a phospho-specific nucleolin IgM monoclo-
nal antibody, TG3 (Applied NeuroSolutions, Inc.) and a
goat anti-mouse IgM labeled with a ruthenium Tris–
bipyridyl complex (BV-TAG Technology, BioVeris
Corp.). The complex is quantitated via electrochemilumi-
nescence based on the excitation/emission properties of the
Tris–bipyridyl complex using a BioVeris M-series ana-
lyzer. EC50 for KSP-induced nucleolin phosphorylation
was determined after treatment with a compound in a 7-
point, half-log dilution series for 16 h. The values of EC50
are reported as average of at least two independent
determinations; standard deviations are within 25–50%
of EC50 values.
References and notes
1. (a) Cox, C. D.; Breslin, M. J.; Mariano, B. J.; Coleman, P.
J.; Buser, C. A.; Walsh, E. S.; Hamilton, K.; Huber, H. E.;
Kohl, N. E.; Torrent, M.; Yan, Y.; Kuo, L. C.; Hartman,
G. D. Bioorg. Med. Chem. Lett. 2005, 15, 2041; (b) Fraley,
M. E.; Garbaccio, R. M.; Arrington, K. L.; Hoffman, W.
F.; Tasber, E. S.; Coleman, P. J.; Buser, C. A.; Walsh, E.
S.; Hamilton, K.; Schaber, M. D.; Lobell, R. B.; Tao, W.;
South, V. J.; Yan, Y.; Kuo, L. C.; Prueksaritanont, T.;
Shu, C.; Torrent, M.; Heimbrook, D. C.; Kohl, N. E.;
Huber, H. E.; Hartman, G. D. Bioorg. Med. Chem. Lett.
2006, 16, 1775; (c) Garbaccio, R. M.; Fraley, M. E.;
Tasber, E. S.; Olson, C. M.; Hoffman, W. F.; Torrent, M.;
Buser, C. A.; Walsh, E. S.; Hamilton, K.; Schaber, M. D.;
Lobell, R. B.; Tao, W.; South, V. J.; Yan, Y.; Kuo, L. C.;
Prueksaritanont, T.; Slaughter, D. E.; Shu, C.; Heim-
brook, D. C.; Kohl, N. E.; Huber, H. E.; Hartman, G. D.
Bioorg. Med. Chem. Lett 2006, 16, 1780; (d) Cox, C. D.;
Torrent, M.; Breslin, M. J.; Mariano, B. J.; Whitman, D.
B.; Coleman, P. J.; Buser, C. A.; Walsh, E. S.; Hamilton,
K.; Schaber, M. D.; Lobell, R. B.; Tao, W.; South, V. J.;
Kohl, N. E.; Yan, Y.; Kuo, L. C.; Prueksaritanont, T.;
Slaughter, D. E.; Li, C.; Mahan, E.; Lu, B.; Hartman, G.
D. Bioorg. Med. Chem. Lett. 2006, 16, 3175; (e) Cox, C.
D.; Breslin, M. J.; Whitman, D. B.; Coleman, P. J.;
Garbaccio, R. M.; Fraley, M. E.; Buser, C. A.; Walsh, E.
S.; Hamilton, K.; Schaber, M. D.; Lobell, R. B.; Tao, W.;
Abrams, M. T.; South, V. J.; Davide, J. P.; Kohl, N. E.;
Hartman, G. D. Bioorg. Med. Chem. Lett. 2007, 17, 2697;
(f) Coleman, P. J.; Schreier, J. D.; Cox, C. D.; Fraley, M.
E.; Garbaccio, R. M.; Buser, C. A.; Walsh, E. S.;
Hamilton, K.; Lobell, R. B.; Rickert, K.; Tao, W.; Diehl,
R. E.; South, V. J.; Davide, J. P.; Kohl, N. E.; Yan, Y.;
Kuo, L.; Salata, J. J.; Hartman, G. D. Bioorg. Med. Chem.
Lett. 2007, previous letter #1; (g) Garbaccio, R. M.;
Tasber, E. S.; Neilson, L.; Coleman, P. J.; Fraley, M. E.;
Olson, C.; Bergman, J.; Torrent, M.; Buser, C. A.; Walsh,
E. S.; Hamilton, K.; Lobell, R. B.; Tao, W.; South, V. J.;
Diehl, R. E.; Davide, J. P.; Yan, Y.; Kuo, L. C.; Li, C.;
Prueksaritanont, T.; Slaughter, D. E.; Salata, J. J.; Kohl,
N. E.; Huber, H. E.; Hartman, G. D. Bioorg. Med. Chem.
Lett. 2007, previous letter #2.
10. Separation of 25 was performed on a ChiralPak AD
(4.6 mm · 250 mm for analytical; then 250 · 5 cm for
preparatory scale, 99:1 hexanes:EtOH, 0.1% diethylamine
as a modifier) column to afford analytically pure material
(98.5% e.e.). The first isomer to elute was the (À) antipode
(Rt = 6.77 min),
and
it
was
‘inactive’
(KSP
IC50 = 221 nM). The second isomer to elute was the (+)
antipode (Rt = 9.03 min), and it was active (KSP
IC50 = 0.2 nM). Data for 25: NMR (500 MHz, CDCl3):
d = 7.39 (dd, J = 8.0, 1.5 Hz, 1H), 7.32–7.28 (m, 4H),
7.24–7.19 (m, 1H), 6.95 (dd, 12.5, 8.5 Hz, 1H), 6.84–6.78
(m, 1H), 4.38 (dd, J = 11.5, 3.5 Hz, 1H), 4.27 (dd, J = 11.5,
3.5 Hz, 1H), 2.47 (s, 3H), 2.46–2.35 (m, 3H), 2.35 (s, 3H),
2.26–2.19 (m, 1H), 2.22 (s, 6H), 1.58–1.49 (m, 1H), 1.34–
1.25 (m, 1H) ppm. HRMS (ES) calcd M+H for
C23H28FN3O 382.2294. Found: 382.2289.
11. See Ref. 1a for a discussion of the unique allosteric
binding site of KSP. More than 20 structurally related
inhibitors have been crystallized in the allosteric binding
pocket of KSP and all have had the orientation shown at
the relevant stereocenter of 25. See Ref. 1a for the details
of the co-crystallization procedure. The coordinates of the
co-crystal structures have been deposited with RCSB
Protein Data Bank under the access codes 2Q2Y and
2Q2Z.
2. See also, Coleman, P. J.; Mercer, S. P.; Roecker, A. J. WO
2006 068933 A2.
12. Relative to the parental KB-3-1 cells, KB-V-1 cells,
originally derived by culturing KB-3-1 cells in the presence
of the Pgp substrate vinblastine (J. Biol. Chem. 1986, 261,
7762), express >500-fold higher levels of Pgp mRNA and
protein. The compound potency (IC50) for induction of
mitotic arrest was determined by evaluating the levels of
the mitotic marker phospho-nucleolin after 16 h incuba-
tion with the test compound in an 11-point half-log
dilution series. The ratio of IC50 obtained in KB-V-1 cells
vs. that in KB-3-1 cells is defined as the MDR ratio. As a
general guideline, we considered compounds with MDR
ratios <10 to be of interest for their ability to enter and kill
cells that overexpress Pgp. Verapamil, a competitive
inhibitor of Pgp, restores the activity of Taxol and our
KSP inhibitors in the KB-V-1 cell line to nearly that
observed in the parental KB-3-1 line, confirming that Pgp
efflux is responsible for the observed resistance to drug-
mediated mitotic arrest. All compounds presented in this
manuscript have MDR ratios of less than 4.4.
3. Intermolecular cycloadditions of this type are well prec-
edented in the literature, however, the products either give
the undesired regiochemistry for compound 2 or products
that are difficult to convert to compounds similar to 2. See
(a) Shimizu, T.; Hayashi, Y.; Nishio, T.; Teramura, K.
Bull. Chem. Soc. Jpn. 1984, 57, 787; (b) Barluenga, J.;
Fernandez-Mari, F.; Gonzalez, R.; Aguilar, E.; Revelli, G.
A.; Viado, A. L.; Fananas, F. J.; Olano, B. Eur. J. Org.
Chem. 2000, 9, 1773.
4. (a) Lam, P. Y. S.; Clark, C. G.; Saubern, S.; Adams, J.;
Winters, M. P.; Chan, D. M. T.; Combs, A. Tetrahedron
Lett. 1998, 39, 2941; (b) Chan, D. M. T.; Monaco, K. L.;
Wang, R.-P.; Winters, M. P. Tetrahedron Lett. 1998, 39,
2933; (c) Evans, D. A.; Katz, J. L.; West, T. R.
Tetrahedron Lett. 1998, 39, 2937.
5. Ritter, T.; Lisbet, K.; Werder, M.; Hauser, H.; Carreira,
E. M. Org. Biomol. Chem. 2005, 3, 3514.
6. Moore, J. A. J. Org. Chem. 1955, 20, 1607, and references
therein.