C O M M U N I C A T I O N S
Scheme 3. Concise Synthesis of (-)-Galbulimima Alkaloid 13 (2)a
a Conditions: (a) nBuLi, THF, -78 °C, 5 min, 85%; (b) Martin sulfurane, benzene, 23 °C, 81%; (c) NBS, NaHCO3, THF, 0 °C; nBu3SnH, AIBN,
benzene, 60 f 90 °C, 55% (two steps); (d) Et3N‚(HF)3, THF, 23 °C; NaBH4, EtOH, 0 °C, 70% (two steps); (e) ClCO2Bn, Na2CO3, H2O, CH2Cl2, 65%; (f)
IBX, TsOH‚H2O, benzene, DMSO, 65 °C, 10 h, 80%; (g) TMSI, CH2Cl2, 0 °C; HCl; NaOH, 23 °C, 89%. For brevity, the corresponding ent-2-epi-isomer
of compounds 5 and 14-17 is not shown.6
Supporting Information Available: Experimental procedures,
spectroscopic data, and copies of 1H and 13C NMR spectra for all
compounds. This material is available free of charge via the Internet
column chromatography. Remarkably, formation of the C8 stereo-
center during the radical cyclization as well as the introduction of
the three contiguous stereocenters (C20, C5, and C6) in the
conversion of silyl enol ether 16 to pentacyclic amine (-)-18 occurs
with a high level of diastereoselection. To date, no other diaster-
eomers have been detected.
References
Introduction of the enone was accomplished by treatment of
N-vinyl carbamate (-)-20 with excess p-TsOH‚H2O and IBX in
benzene/DMSO at 65 °C for 10 h to provide carbamate (-)-21 in
80% yield.13 Subsequent deprotection of (-)-N-Cbz GB 13 (21)
with trimethylsilyl iodide (TMSI)14 followed by an aqueous workup
provided synthetic GB 13 (2) in 89% yield (Scheme 3). All
spectroscopic data for our enantiomerically enriched (-)-2 matched
(1) (a) The structures for 2 and 3 shown in Figure 1 are antipodal to the
originally described structures. (b) Binns, S. V.; Dustan, P. J.; Guise, G.
B.; Holder, G. M.; Hollis, A. F.; McCredie, R. S.; Pinhey, J. T.; Prager,
R. H.; Rasmussen, M.; Ritchie, E.; Taylor, W. C. Aust. J. Chem. 1965,
18, 569. (c) Mander, L. N.; Prager, R. H.; Rasmussen, M.; Ritchie, E.;
Taylor, W. C. Aust. J. Chem. 1967, 20, 1473. (d) Mander, L. N.; Prager,
R. H.; Rasmussen, M.; Ritchie, E.; Taylor, W. C. Aust. J. Chem. 1967,
20, 1705.
(2) (a) Kozikowski, A. P.; Fauq, A. H.; Miller, J. H.; McKinney, M. Bioorg.
Med. Chem. Lett. 1992, 2, 797. (b) Malaska, M. J.; Fauq, A. H.;
Kozikowski, A. P.; Aagaard, P. J.; McKinney, M. Bioorg. Med. Chem.
Lett. 1995, 5, 61.
(3) (a) Hart, D. J.; Wu, W.-L.; Kozikowski, A. P. J. Am. Chem. Soc. 1995,
117, 9369. (b) Chackalamannil, S.; Davies, R. J.; Aserom, T.; Doller, D.;
Leone, D. J. Am. Chem. Soc. 1996, 118, 9812. (c) Takadoi, M.; Katoh,
T.; Ishiwata, A.; Terashima, S. Tetrahedron Lett. 1999, 40, 3399. (d)
Tchabanenko, K.; Adlington, R. M.; Cowley, A. R.; Baldwin, J. E. Org.
Lett. 2005, 7, 585. (e) Tchabanenko, K.; Chesworth, R.; Parker, J. S.;
Anand, N. K.; Russell, A. T.; Adlington, R. M.; Baldwin, J. E. Tetrahedron
2005, 61, 11649.
(4) (a) Mander, L. N.; McLachlan, M. M. J. Am. Chem. Soc. 2003, 125, 2400.
(b) Unpublished X-ray data of himandrine hydrogen bromide have
suggested a reversal of its originally assigned absolute stereochemistry;
see ref 2 in O’Connor, P. D.; Mander, L. N.; McLachlan, M. M. W. Org
Lett. 2004, 6, 703.
literature data.1,4a The sign of rotation for our synthetic 2 ([R]22
D
) -64 (c 0.06, CHCl3)), was consistent with that reported for the
natural enantiomer ([R] ) -84 (CHCl3)1b),6 unambiguously secur-
ing the absolute stereochemistry. Synthesis of (+)-GB 13 (ent-2,
[R]22 ) +66 (c 0.07, CHCl3)) using (+)-6 (>99% ee) via the
D
route described above confirmed our absolute stereochemical
assignment.6 Interestingly, intramolecular amine conjugate addition
at C19 was observed upon N-deprotection of 21 and acidic
treatment. This conjugate addition was subject to reversion on mild
base treatment (1 N NaOHaq, 1 h).15 This facile cyclization supports
the hypothesis for the biosynthesis of himgaline (3) via sequential
conjugate addition and carbonyl reduction of 2.1c,6
We describe the first total synthesis of (+)- and (-)-GB 13 (2).
The absolute stereochemistry of natural (-)-2 is revised to 2S.
Noteworthy features of this chemistry include a vinyl radical
cyclization strategy to secure the C-ring and the successful execution
of our biomimetically inspired strategy for introduction of the CDE-
ring system in 2 (16 f 18, Scheme 3). Current efforts are directed
toward the synthesis of other members of this intriguing family of
natural alkaloids.
(5) (a) Miyaura, N.; Yamada, K.; Suginome, H.; Suzuki, A. J. Am. Chem.
Soc. 1985, 107, 972. (b) Uenishi, J.-i.; Beau, J.-M.; Armstrong, R. W.;
Kishi, Y. J. Am. Chem. Soc. 1987, 109, 4756. (c) Hoshino, Y.; Miyaura,
N.; Suzuki, A. Bull. Chem. Soc. Jpn. 1988, 61, 3008.
(6) See the Supporting Information for details.
(7) (a) Roush, W. R.; Moriarty, K. J.; Brown, B. B. Tetrahedron Lett. 1990,
31, 6509. (b) Evans, D. A.; Starr, J. T. J. Am. Chem. Soc. 2003, 125, 13531.
(8) Jiang, L.; Job, G. E.; Klapars, A.; Buchwald, S. L. Org. Lett. 2003, 5, 3667.
(9) (a) Chatterjee, A. K.; Morgan, J. P.; Scholl, M.; Grubbs, R. H. J. Am.
Chem. Soc. 2000, 122, 3783. (b) Garber, S. B.; Kingsbury, J. S.; Gray, B.
L.; Hoveyda, A. H. J. Am. Chem. Soc. 2000, 122, 8168.
(10) (a) Stork, G.; Dowd, S. J. Am. Chem. Soc. 1963, 85, 2178. (b) Wittig, G.;
Frommeld, H. D.; Suchanek, P. Angew. Chem., Int. Ed. Engl. 1963, 2,
683. (c) Whitesell, J. K.; Whitesell, M. A. Synthesis 1983, 517.
(11) Martin, J. C.; Arhart, R. J. J. Am. Chem. Soc. 1971, 93, 4327.
(12) (a) Stork, G.; Baine, N. H. J. Am. Chem. Soc. 1982, 104, 2321. (b) Stork,
G.; Mook, R., Jr. J. Am. Chem. Soc. 1983, 105, 3720.
Acknowledgment. M.M. is a Dale F. and Betty Ann Frey
Damon Runyon Scholar supported by the Damon Runyon Cancer
Research Foundation (DRS-39-04). M.M. is a Firmenich Assistant
Professor of Chemistry. We thank Professor R. G. Griffin and Dr.
T. Bielecki for use of a high field instrument at the MIT-Harvard
Center for Magnetic Resonance (EB-002026). We are grateful to
Professor L. N. Mander for a copy of the 1H NMR spectrum of 2.
We acknowledge financial support by NIH-NIGMS (GM074825).
1
(13) Monitoring of this transformation by H NMR spectroscopy revealed an
initial hydrolysis to the corresponding C16 ketone followed by oxidation
to the desired C16 enone; see: Nicolaou, K. C.; Zhong, Y.-L.; Baran, P.
S. J. Am. Chem. Soc. 2000, 122, 7596.
(14) Jung, M. E.; Lyster, M. A. J. Chem. Soc., Chem Commun. 1978, 315.
(15) This addition occurs spontaneously for the 2-epi-diastereomer, giving 2-epi-
16-oxohimgaline. See Supporting Information for details.
JA0626180
9
J. AM. CHEM. SOC. VOL. 128, NO. 25, 2006 8127