Communications
SEM images were taken by using a field emission scanning
electron microscope (JEOL JSM 6700F and Hitachi S4300) operated
at an acceleration voltage of 5–15 kV. TEM images were taken by
using a JEOL-100 microscope operated at 50 kV. The samples were
prepared by transferring them from the silicon slides by carbon–
copper grids dampened with methanol.
Received: February 10, 2006
Revised: March 15, 2006
Published online: April 27, 2006
Keywords: amphiphiles · porphyrinoids · self-assembly ·
.
vesicles
Figure 5. UV/Vis spectra of solutions of 1 in chloroform (dotted line),
chloroform/methanol (1:1; solid line), and the film cast from the
chloroform/methanol (1:1) solution (dashed line).
[1] a) G. W. Orr, L. J. Barbour, J. L. Atwood, Science 1999, 285,
1049; b) V. Percec, C.-H. Ahn, G. Ungar, D. J. P. Yeardley, M.
Möller, S. S. Sheiko, Nature 1998, 391, 161; c) J.-M. Lehn, Angew.
Chem. 1990, 102, 1347; Angew. Chem. Int. Ed. Engl. 1990, 29,
1304; d) A. C. Grimsdale, K. Mꢁllen, Angew. Chem. 2005, 117,
5732; Angew. Chem. Int. Ed. 2005, 44, 5592.
[2] a) H. Y. Gan, H. B. Liu, Y. J. Li, et al., J. Am. Chem. Soc. 2005,
127, 12452; b) Y. Liu, J. P. Zhuang, H. B. Liu, Y. L. Li, F. S. Lu,
H. Y. Gan, T. G. Jiu, N. Wang, X. R. He, D. B. Zhu, ChemPhys-
Chem 2004, 5, 1210.
[3] a) R. Dagani, Chem. Eng. News 1998, 76(23), 35; b) F. J. M.
Hoeben, P. Jonkheijm, E. W. Meijer, A. P. H. J. Schenning,
Chem. Rev. 2005, 105, 1491; c) T. Shimizu, M. Masuda, H.
Minamikawa, Chem. Rev. 2005, 105, 1401.
[4] a) Y. R. Ma, L. M. Qi, J. M. Ma, H. M. Cheng, Langmuir 2003,
19, 4040; b) C. E. Fowler, D. Khushalani, S. Mann, Chem.
Commun. 2001, 2028; c) F. Caruso, Adv. Mater. 2001, 13, 11.
[5] a) F. Caruso, Chem. Eur. J. 2000, 6, 413; b) S. Schacht, Q. Huo,
I. G. Viogt-Martin, G. D. Stucky, F. Schꢁth, Science 1996, 273,
768; c) T. Liu, Y. Xie, B. Chu, Langmuir 2000, 16, 9015; d) S. H.
Yu, H. Cölfen, M. Antonietti, J. Phys. Chem. B 2003, 107, 7396.
[6] a) M. Yang, W. Wang, F. Yuan, X. Zhang, J. Li, F. Liang, B. He, B.
Minch, G. Wegner, J. Am. Chem. Soc. 2005, 127, 15107; b) S. A.
Jenekhe, X. L. Chen, Science 1999, 283, 372; c) F. Caruso, R. A.
Caruso, H. Mohwald, Science 1998, 282, 1111; d) X. Y. Liu, J.-S.
Kim, J. Wu, A. Eisenberg, Macromolecules 2005, 38, 6749; e) H.-
K. Lee, K. M. Park, Y. J. Jeon, D. Kim, D. H. Oh, H. S. Kim,
C. K. Park, K. Kim, J. Am. Chem. Soc. 2005, 127, 5006; f) M. Lee,
S.-J. Lee, L.-H. Jiang, J. Am. Chem. Soc. 2004, 126, 12724;
g) D. M. Vriezema, J. Hoogboom, K. Velonia, K. Takazawa,
P. C. M. Christianen, J. C. Maan, A. E. Rowan, R. J. M. Nolte,
Angew. Chem. 2003, 115, 796; Angew. Chem. Int. Ed. 2003, 42,
772.
the different solubility of the blocks or the hydrophilic and
hydrophobic units.[26] For 1, methanol was a good solvent for
the bipyridine–Pd complex unit, but was a poor solvent for the
porphyrin moiety. On the contrary, chloroform was a good
solvent for porphyrin but not for the bipyridine–Pd complex
unit. In this solvent system, 1 became an amphiphilic
molecule and could assemble into layered structures that
could then close to form vesicles. These two parts should
completely segregate in the membrane. Because methanol
can coordinate with zinc porphyrin (see the Supporting
Information), the amphiphiles self-organize into a bilayer
structure (Figure 3e) and the resulting membrane has many
little holes owing to the loose packing of porphyrin. With the
removal of methanol by heating with pattern II, 1 rearranged
into the dense packing and low interfacial free energy
interdigitated layer (Figure 3f), which resulted in the worm-
like aggregates shown in Figure 4c,d.
In summary, a novel amphiphilic porphyrin derivative
composed of two porphyrins connected with 2,2’-bipyridyl
group, in which 2,2’-bipyridine was complexed with palladi-
um(ii) dichloride, has been synthesized. The crystal structure
of the Pd-free porphyrin–bipyridine derivative was obtained.
Computer simulations and NMR spectroscopic-titration
experiments indicated that the Pd complex showed a V-
shaped conformer. A simple and controllable process for
producing the hollow capsules from vesicles was described.
SEM and TEM imagines confirmed that this molecule is able
to self-assemble into vesicles with a diameter of 200 nm in
CHCl3/CH3OH. These vesicles could assemble into hollow
capsules and wormlike structure on demand.
[7] C. J. McDonald, K. J. Bouck, A. B. Chaput, C. J. Stevens,
Macromolecules 2000, 33, 1593.
[8] a) M. Sano, K. Oishi, T. Ishi-i, S. Shinkai, Langmuir 2000, 16,
3773; b) C. Burger, J. Hao, Q. Ying, H. Isobe, M. Sawamura, E.
Nakamura, B. Chu, J. Colloid Interface Sci. 2004, 275, 632; c) S.
Zhou, C. Burger, B. Chu, M. Sawamura, N. Nagahama, M.
Toganoh, U. E. Hackler, H. Isobe, E. Nakamura, Science 2001,
291, 1944.
[9] a) S. Iijima, Nature 1991, 354, 56; b) C. R. Martin, Science 1994,
266, 1961; c) C. G. Wu, T. Bein, Science 1994, 264, 1757; d) A. M.
Morales, C. M. Lieber, Science 1998, 279, 208.
Experimental Section
[10] J.-C. Chambron, V. Heitz, J.-P. Sauvage in The Porphyrin
Handbook, Vol. 6 (Eds.: K. M. Kadish, K. M. Smith, R. Guilard),
Academic Press, New York, 2000, p. 1.
[11] a) T. S. Balaban, R. Goddard, M. Linke-Schaetzel, J.-M. Lehn, J.
Am. Chem. Soc. 2003, 125, 4233; b) M. Grꢂtzel, Nature 2001, 414,
338; c) J. Duschl, M. Michl, W. Kunz, Angew. Chem. 2004, 116,
644; Angew. Chem. Int. Ed. 2004, 43, 634.
Heat treatment of the samples: Pattern I, the silicon slides containing
the samples were placed in a petri dish and the petri dish was heated
with water at 40, 50, 60, 70, 80, and 908C, for 0.5 h each. Pattern II, the
silicon slides containing the samples were placed in a petri dish, which
was then set on water at 908C and the water was then allowed to cool
to room temperature.
ꢀ 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2006, 45, 3639 –3643