C O M M U N I C A T I O N S
Table 2. Nickel-Catalyzed Hydroheteroarylation of Alkynesa
(7) For trans-selective hydroarylations of alkynes via electrophilic metalation,
see: (a) Jia, C.; Piao, D.; Oyamada, J.; Lu, W.; Kitamura, T.; Fujiwara,
Y. Science 2000, 287, 1992. (b) Trost, B. M.; Toste, F. D.; Greenman, K.
J. Am. Chem. Soc. 2003, 125, 4518. (c) Tunge, J. A.; Foresee, L. N.
Organometallics 2005, 24, 6440.
(8) Similar regiochemistry was also reported for hydronickelation of unsym-
metrical alkynes; see entries 16-18 of Table 2 and refs 1b and 1f.
(9) For representative examples of cis-hydroarylation of alkynes via oxidative
addition of an Ar-H bond at high temperature or under irradiation, see:
(a) Hong, P.; Cho, B.-R.; Yamazaki, H. Chem. Lett. 1979, 339. (b)
Tokunaga, Y.; Sakakura, T.; Tanaka, M. J. Mol. Catal. 1989, 56, 305. (c)
Aulwurm, U. R.; Melchinger, J. U.; Kisch, H. Organometallics 1995, 14,
3385. (d) Kakiuchi, F.; Yamamoto, Y.; Chatani, N.; Murai, S. Chem. Lett.
1995, 681. (e) Satoh, T.; Nishinaka, Y.; Miura, M.; Nomura, M. Chem.
Lett. 1999, 615. (f) Kakiuchi, F.; Sato, T.; Igi, K.; Chatani, N.; Murai, S.
Chem. Lett. 2001, 386. (g) Lim, S.-G.; Lee, J. H.; Moon, C. W.; Hong,
J.-B.; Jun, C.-H. Org. Lett. 2003, 5, 2759. (h) Kuninobu, Y.; Tokunaga,
Y.; Kawata, A.; Takai, K. J. Am. Chem. Soc. 2006, 128, 202. The
mechanism of cis-hydroarylation of alkynes catalyzed by dinuclear
palladium complexes is unclear. See: (i) Tsukada, N.; Mitsuboshi, T.;
Setoguchi, H.; Inoue, Y. J. Am. Chem. Soc. 2003, 125, 12102.
(10) (a) Garc´ıa, J. J.; Jones, W. D. Organometallics 2000, 19, 5544. (b) Garc´ıa,
J. J.; Brunkan, N. M.; Jones, W. D. J. Am. Chem. Soc. 2002, 124, 9547.
(11) At present, the following (hetero)arenes have failed to participate in the
reaction: 4-(trifluoromethyl)benzonitrile, methyl 4-(trifluoromethyl)ben-
zoate, ethyl 1-methylindole-2-carboxylate, 1-methylpyrrole, 1-methyl
imidazole. Unsubstituted indoles gave a mixture of 2- and 3-alkenylated
products.
(12) A similar reaction of 1g with 2c in the presence of a Ru(H)2(CO)(PPh3)3
catalyst at 115 °C has been reported to give the corresponding adduct as
a mixture of stereoisomers in 42% yield; see ref 9f.
a Unless otherwise noted, all reactions were carried out using a hetero-
arene (1.0 mmol), an alkyne (1.0 mmol), Ni(cod)2 (0.10 mmol), and PCyp3
(0.10 mmol) in toluene (2.5 mL) at 35 °C. b Isolated yields based on the
heteroarene. c The reaction was carried out at 50 °C using 4.0 mmol of 2a.
d The reaction was carried out at 100 °C using 3.0 mmol of 2a. e The reaction
was carried out at 50 °C. f The reaction was carried out at 100 °C using 2.0
mmol of 2d.
(13) Terminal alkynes failed to give the corresponding adducts due to rapid
background oligomerization of alkynes.
(14) For selected examples of related hydroheteroarylations of unsaturated
bonds, see: (a) Hong, P.; Cho, B.-R.; Yamazaki, H. Chem. Lett. 1980,
507. (b) Jordan, R. F.; Taylor, D. F. J. Am. Chem. Soc. 1989, 111, 778.
(c) Chatani, N.; Fukuyama, T.; Kakiuchi, F.; Murai, S. J. Am. Chem. Soc.
1996, 118, 493. (d) Lu, W.; Jia, C.; Kitamura, T.; Fujiwara, Y. Org. Lett.
2000, 2, 2927. (e) Tan, K. L.; Bergman, R. G.; Ellman, J. A. J. Am. Chem.
Soc. 2002, 124, 13964. (f) Pittard, K. A.; Lee, J. P.; Cundari, T. R.;
Gunnoe, T. B.; Petersen, J. L. Organometallics 2004, 23, 5514. (g)
Murakami, M.; Hori, S. J. Am. Chem. Soc. 2003, 125, 4720. (h) Ferreira,
E. M.; Stoltz, B. M. J. Am. Chem. Soc. 2003, 125, 9578. (i) Youn, S. W.;
Pastine, S. J.; Sames, D. Org. Lett. 2004, 6, 581. (j) Liu, C.; Han, X.;
Wang, X.; Widenhoefer, R. A. J. Am. Chem. Soc. 2004, 126, 3700. (k)
Tan, K. L.; Park, S.; Ellman, J. A.; Bergman, R. G. J. Org. Chem. 2004,
69, 7329. (l) Grimster, N. P.; Gauntlett, C.; Godfrey, C. R. A.; Gaunt, M.
J. Angew. Chem., Int. Ed. 2005, 44, 3125. (m) Tsukada, N.; Murata, K.;
Inoue, Y. Tetrahedron Lett. 2005, 46, 7515.
Acknowledgment. This work has been supported financially
by a Grant-in-Aid for Creative Scientific Research, No. 16GS0209,
and COE Research on “United Approach to New Material Science”
from MEXT.
Supporting Information Available: Detailed experimental pro-
cedures including spectroscopic and analytical data (PDF). This material
References
(1) For rare examples of stoichiometric and catalytic C-H activation by nickel,
see: (a) Kleiman, J. P.; Dubeck, M. J. Am. Chem. Soc. 1963, 85, 1544.
(b) Tsuda, T.; Kiyoi, T.; Saegusa, T. J. Org. Chem. 1990, 55, 2554. (c)
Brunkan, N. M.; Brestensky, D. M.; Jones, W. D. J. Am. Chem. Soc.
2004, 126, 3627. (d) Clement, N. D.; Cavell, K. J.; Jones, C.; Elsevier,
C. J. Angew. Chem., Int. Ed. 2004, 43, 1277. (e) Clement, N. D.; Cavell,
K. J. Angew. Chem., Int. Ed. 2004, 43, 3845. (f) Ogoshi, S.; Ueta, M.;
Oka, M.; Kurosawa, H. Chem. Commun. 2004, 2732. (g) Keen, A. L.;
Johnson, S. A. J. Am. Chem. Soc. 2006, 128, 1806.
(15) For hydroarylation of alkynes via the Friedel-Crafts alkenylations, see:
(a) Yamaguchi, M.; Kido, Y.; Hayashi, A.; Hirama, M. Angew. Chem.,
Int. Ed. 1997, 36, 1313. (b) Tsuchimoto, T.; Maeda, T.; Shirakawa, E.;
Kawakami, Y. Chem. Commun. 2000, 1573. (c) Reetz, M. T.; Sommer,
K. Eur. J. Org. Chem. 2003, 3485. (d) Shi, Z.; He, S. J. Org. Chem.
2004, 69, 3669.
(16) For selected recent work on intermolecular transition-metal-catalyzed C-C
bond formation of indoles via C-H activation, see: (a) Sawada, T.; Fuerst,
D. E.; Wood, J. L. Tetrahedron Lett. 2003, 44, 4919. (b) Wang, X.; Lane,
B. S.; Sames, D. J. Am. Chem. Soc. 2005, 127, 4996. (c) Lane, B. S.;
Brown, M. A.; Sames, D. J. Am. Chem. Soc. 2005, 127, 8050. (d) Deprez,
N. R.; Kalyani, D.; Krause, A.; Sanford, M. S. J. Am. Chem. Soc. 2006,
128, 4972.
(17) For selected recent work on intermolecular transition-metal-catalyzed C-C
bond formation of other heteroarenes via C-H activation, see: (a) Pivsa-
Art, S.; Satoh, T.; Kawamura, Y.; Miura, M.; Nomura, M. Bull. Chem.
Soc. Jpn. 1998, 71, 4667. (b) Mori, A.; Sekiguchi, A.; Masui, K.; Shimada,
T.; Horie, M.; Osakada, K.; Kawamoto, M.; Ikeda, T. J. Am. Chem. Soc.
2003, 125, 1700. (c) Sezen, B.; Sames, D. Org. Lett. 2003, 5, 3607. (d)
Dick, A. R.; Hull, K. L.; Sanford, M. S. J. Am. Chem. Soc. 2004, 126,
2300. (e) Bellina, F.; Cauteruccio, S.; Mannina, L.; Rossi, R.; Viel, S. J.
Org. Chem. 2005, 70, 3997. (f) Campeau, L.-C.; Rousseaux, S.; Fagnou,
K. J. Am. Chem. Soc. 2005, 127, 18020. (g) Campeau, L.-C.; Parisien,
M.; Jean, A.; Fagnou, K. J. Am. Chem. Soc. 2006, 128, 581. (h) Lewis,
J. C.; Wu, J. Y.; Bergman, R. G.; Ellman, J. A. Angew. Chem., Int. Ed.
2006, 45, 1589.
(2) For ligand-dependent divergent nickel catalysis on the reactions of
benzonitrile with alkynes, see: (a) Nakao, Y.; Oda, S.; Hiyama, T. J.
Am. Chem. Soc. 2004, 126, 13904. (b) Nakao, Y.; Oda, S.; Yada, A.;
Hiyama, T. Tetrahedron, in press. (c) McCormick, M. M.; Duong, H. A.;
Zuo, G.; Louie, J. J. Am. Chem. Soc. 2004, 127, 13904.
(3) A stereochemically unidentified product derived from the insertion of two
molecules of 2a into the Ar-H bond at the C-2 position of 1b was also
obtained in 31% yield.
(4) Other bulky tri(sec-alkyl)phosphines, such as PCy3 and P(i-Pr)3, also gave
comparable results (>90% yield estimated by GC), whereas P(t-Bu)3 and
PPh3 were found totally ineffective for the present hydroarylation.
(5) Preliminary 31P NMR studies show that PCyp3 does not coordinate to the
nickel center of Ni(cod)2 in the absence of an alkyne; see also ref 1f.
(6) The following experiments could suggest that an electrophilic metalation
pathway as a C-H activating step7 would be unlikely. (a) The reaction
of 3-cyano-2-deuterio-1-methylindole (1b-d1) with 2a gave the corre-
sponding deuterated adduct 4ba-d1. (b) The reaction of an equimolar (0.50
mmol) mixture of 1b-d1 and methyl 1-methylindole-3-carboxylate (1c)
with 2a (1.0 mmol) under the identical conditions did not cause
intermolecular deuterium crossover. (c) Nickel(II) complexes, such as Ni-
(acac)2 and NiCl2, failed to catalyze the reaction in the presence or absence
of external bases, such as Et3N and Cs2CO3.
JA0623459
9
J. AM. CHEM. SOC. VOL. 128, NO. 25, 2006 8147