Scheme 1 Reagents and conditions: (i) ethylene glycol, p-TSA, PhH, 110 ◦C, 14 h; (ii) 2 M NaOH, EtOH, 70 ◦C, 3 h; (iii) dimethyl aminomalonate.HCl,
HOBt, EDC.HCl, CH2Cl2, NMM, 0 ◦C to RT (82% over 3 steps); (iv) 4 : 1 AcOH–H2O, 65 ◦C, 4 days (71%); (v) excess TMSOTf, 2,6-lutidine, CH2Cl2,
−78 ◦C to 0 ◦C, then 1 M HCl (91%); (vi) PMB–Br, NaH, DMF, 0 ◦C to RT, 14 h (82%); (vii) Super-hydride (1.0 M in THF), CH2Cl2, −78 ◦C, 3 h (78%);
(viii) 2-cyclohexenylzinc bromide, THF, −78 ◦C (87%); (ix) BCl3.DMS, CH2Cl2, 24 h, 0 ◦C to RT; (x) 48% HF in H2O–MeCN (1 : 9), RT, 22 h; (xi) CAN,
MeCN, H2O (3 : 1), 0 ◦C, 1 h (87% over 3 steps); (xii) [MeTeAlMe2]2, PhMe, RT, 24 h; (xiii) BOP–Cl, CH2Cl2, pyridine, RT, 3 h; (xiv) PPh3Cl2, MeCN,
pyridine, RT, 4 h (45% over 3 steps).
from the substituted b-ketoester 4. The key features of the synthetic
route are the diastereoselective acid-catalysed cyclisation of 6 to
7, and the facile regioselective reduction of the malonate 8b to
the aldehyde 9, using Super-hydride at −78 ◦C. There are a range
of options available to develop the route into an enantioselective
synthesis of (+)-salinosporamide A, and some of those options
are now being pursued.
A. Kawai, Y. Kohno, O. Hara and T. Shioiri, J. Am. Chem. Soc., 1989,
111, 1524–1525; (c) Y. Hamada, O. Hara, A. Kawai, Y. Kohno and T.
Shioiri, Tetrahedron, 1991, 47, 8635–8652.
9 C. J. Brennan, G. Pattenden and G. Rescourio, Tetrahedron Lett., 2003,
44, 8757–8760.
10 For some studies on the biosynthesis of lactacystin 3, see: A. Nakagawa,
¯
S. Takahashi, K. Uchida, K. Matsuzaki, S. Omura, A. Nakamura,
N. Kurihara, T. Nakamatsu, Y. Miyake, K. Take and M. Kainosho,
Tetrahedron Lett., 1994, 35, 5009–5012.
We thank AstraZeneca for financial support (studentship to
N. P. M.). We also thank Dr A. J. Blake of this School for the
crystal structure determination of 7.
11 Some studies of the biosynthesis of salinosporamide A have been
made by L. L. Beer and B. S. Moore; unpublished work, personal
correspondence with B. S. Moore, Scripps Institution of Oceanography,
UCSD, CA.
12 cf.M. Lee and D. H. Kim, Bioorg. Med. Chem., 2002, 10, 913–922.
13 For a related acid catalysed reaction of diketene with substituted
aminomalonates see; G. Simig, G. Doleschall, G. Hornya´k, J. Fetter,
K. Lempert, J. Nyitrai, P. Huszthy, T. Gizur and M. Kajta´r-Peredy,
Tetrahedron, 1985, 41, 479–484.
Notes and references
1 R. H. Feling, G. O. Buchanan, T. J. Mincer, C. A. Kauffman, P. R.
Jensen and W. Fenical, Angew. Chem., Int. Ed., 2003, 42, 355–357.
2 Reviewed in: (a) E. J. Corey and W.-D. Z. Li, Chem. Pharm. Bull., 1999,
47, 1–10; (b) E. J. Corey, G. A. Reichard and R. Kania, Tetrahedron
Lett., 1993, 34, 6977–6980; (c) E. J. Corey and G. A. Reichard, J. Am.
Chem. Soc., 1992, 114, 10677–10678; (d) G. Fenteany, R. F. Standaert,
G. A. Reichard, E. J. Corey and S. L. Schreiber, Proc. Natl. Acad. Sci.
U. S. A., 1994, 91, 3358–3362.
14 Crystal data for 7: C18H23NO7, M = 365.37, monoclinic, a = 14.292(6),
◦
3
˚
˚
b = 11.057(4), c = 11.287(5) A, b = 92.090(7) , U = 1782.5(13) A ,
T = 150(2) K, space group P21/c, Z = 4, l(Mo–Ka) = 0.105 mm−1
,
15038 reflections measured, 4068 unique (Rint = 0.124). Final R1 [3308
F ≥ 4r(F)] = 0.0421, wR2 (all data) = 0.123. CCDC reference number
608046. For crystallographic data in CIF or other electronic format see
DOI: 10.1039/b607109k.
15 A small amount (<10%) of the corresponding O-TMS epimer was
produced concurrently, resulting from a retro-aldolisation process. The
epimer was cleanly removed by chromatography.
3 (a) S. Omura, T. Fujimoto, K. Otoguro, K. Matsuzaki, R. Moriguchi,
H. Tanaka and Y. Sasaki, J. Antibiot., 1991, 44, 113–116; (b) S. Omura,
K. Matsuzaki, T. Fujimoto, K. Kosuge, T. Furuya, S. Fujita and A.
Nakagawa, J. Antibiot., 1991, 44, 117–118.
16 The regioselective reduction of 8b, leading to 9, can be rationalised
on steric grounds, with the bulky O-TMS group inhibiting hydride
delivery to the adjacent syn-orientated CO2Me group. It is also possible
that the same O-TMS group exercises an inductive effect and activates
the corresponding anti-orientated CO2Me in 8b to reduction, as a
consequence of their antiplanar relationship.
4 For a review see:J. S. Panek, C. E. Masse, A. J. Morgan and J. Adams,
Eur. J. Org. Chem., 2000, 2513–2528, and references therein; see also
(a) T. J. Donohoe, H. O. Sintim, L. Sisangia, K. W. Ace, P. M. Guyo, A.
Cowley and J. D. Harling, Chem.–Eur. J., 2005, 11, 4227–4238; (b) T. J.
Donohoe, H. O. Sintim, L. Sisangia and J. D. Harling, Angew. Chem.,
Int. Ed., 2004, 43, 2293–2269; (c) H. Ooi, N. Ishibashi, Y. Iwabuchi,
J. Ishihara and S. Hatekeyama, J. Org. Chem., 2004, 69, 7765–7768;
(d) J. J. Wardrop and E. G. Bowen, Chem. Commun., 2005, 5106–5108;
(e) C. J. Hayes, A. E. Sherlock and M. D. Selby, Org. Biomol. Chem.,
2006, 4, 193–195; (f) N. Fukuda, K. Sasaki, T. V. R. S. Sastry, M. Kanai
and M. Shibasaki, J. Org. Chem., 2006, 71, 1220–1225.
5 L. R. Reddy, P. Saravanan and E. J. Corey, J. Am. Chem. Soc., 2004,
126, 6230–6231.
6 (a) L. R. Reddy, J.-F. Fournier, B. V. S. Reddy and E. J. Corey, Org.
Lett., 2005, 7, 2699–2701; (b) L. R. Reddy, J.-F. Fournier, B. V. S. Reddy
and E. J. Corey, J. Am. Chem. Soc., 2005, 127, 8974–8976.
7 A. Endo and S. J. Danishefsky, J. Am. Chem. Soc., 2005, 127, 8298–
8299.
17 Data for compound 10: colourless solid, mp 157–160 ◦C; mmax
(CHCl3)/cm−1 3564, 2953, 1755, 1721, 1688, 1514; dH (360 MHz,
CDCl3) 7.34–7.26 (5H, m, C6H5), 7.23 (2H, d, J 8.7, ArH), 6.80 (2H,
=
d, J 8.7, ArH), 6.05 (1H, app. d, J 10.2, CH2CH ), 5.63 (1H, app. d,
=
J 10.2, CH2CH CH), 4.80 (1H, d, J 15.3, OCHHPMB), 4.52 (2H, s,
OCH2Ph), 4.42 (1H, d, J 15.3 OCHHPMB), 4.20 (1H, dd, J 3.3, 7.9,
CH(OH)), 3.89 − 3.80 (2H, m, CH2OBn), 3.79 (3H, s, CO2Me), 3.62
=
(3H, s, ArOMe), 3.03 (1H, dd, J 3.8, 9.4, C( O)CH), 2.26 (1H, br s,
=
CH2CH CHCH), 2.04 (2H, br s, CH2), 1.91–1.89 (2H, m, CH2), 1.76
(3H, s, CCH3), 1.59–1.51 (2H, m, CH2), 0.16 (9H, s, TMS); dC (90 MHz,
CDCl3) 177.7 (s), 169.5 (s), 157.8 (s), 138.7 (s), 134.7 (d), 130.6 (s), 128.2
(d), 127.7 (d), 127.3 (d), 127.1 (d), 123.8 (d), 113.2 (d), 86.2 (s), 82.4
(s), 76.8 (d), 72.9 (t), 68.8 (t), 55.2 (q), 51.7 (q), 48.3 (d), 47.7 (t), 38.2
(d), 29.4 (t), 26.1 (t), 25.0 (t), 20.8 (q), 20.5 (t), 2.7 (q); m/z (ES) Found
632.3041 (M + H+, C34H47NO7SiNa requires 632.3014).
8 cf. (a) J. K. Thottathil, J. L. Moniot, R. H. Mueller, M. K. T. Wong
and T. P. Kissick, J. Org. Chem., 1986, 51, 3140–3143; (b) Y. Hamada,
2846 | Org. Biomol. Chem., 2006, 4, 2845–2846
This journal is
The Royal Society of Chemistry 2006
©