5 L. Stryer, Biochemistry, W. H. Freeman, New York, 4th edn, 1995,
p. 705.
6 For simulations of such chemistry, see: R. Breslow, Acc. Chem. Res.,
1980, 13, 170.
7 G. H. Posner, A. W. Runquist and M. J. Chapdelaine, J. Org. Chem.,
1977, 42, 1202.
8 H. Yamamoto and K. Maruoka, J. Am. Chem. Soc., 1981, 103, 4186.
9 S. David and S. Hanessian, Tetrahedron, 1985, 41, 643.
10 E. E. van Tamelen, Acc. Chem. Res., 1968, 1, 111.
11 S. E. Bystro¨m, A. Bo¨rje and B. Akermark, J. Am. Chem. Soc., 1993,
115, 2081.
12 R. Breslow and P. Campbell, Bioorg. Chem., 1971, 1, 140.
13 D. A. Jaeger, M. D. Ward and C. A. Martin, Tetrahedron, 1984, 40,
2691.
14 C. J. Suckling, Ind. Eng. Chem. Prod. Res. Dev., 1981, 20, 434.
15 M. Yoshizawa, M. Tamura and M. Fujita, Science, 2006, 312, 251.
16 H. Hagiwara and H. Uda, J. Chem. Soc., Chem. Commun., 1987, 1351;
R. Sterozycki, Synthesis, 1979, 724.
17 E. Marcantoni, F. Nobili, G. Bartoli, M. Bosco and L. Sambri, J. Org.
Chem., 1997, 62, 4183.
product. It is suggested, therefore, that regioselectivity is predicated
upon tight bidentate binding of the reactant followed by loose or
non-existent monodentate binding of the product. The fact that
bis-hydrolysis product was observed (Table 1) implies that it was
formed prior to dissociation of the mono-product from the catalyst
surface.
An ability to operate on only one of two nearly identical,27
distant functional groups constitutes a synthetically important
technology. Our results in this field are encouraging but only an
initial confrontation with the problem. Thus, the presence of
double-hydrolyses limits the overall yield of the major mono-
ketone. Yet our data constitute a feasibility study that should
encourage further research into ‘‘surface-imposed regioselectivity’’.
It is to be hoped that with the appropriately designed catalysts,
molecular position, rather than classical stereoelectronic factors,
will someday play a bigger role in dictating the outcome of
synthetic reactions.
18 J. H. Babler, N. C. Malek and M. J. Coghlan, J. Org. Chem., 1978, 43,
1821.
This work was supported by the Petroleum Research
Foundation. We thank Dr Hailing Zhang for her cross-checking
a run.
19 G. Balme and J. Gore´, J. Org. Chem., 1983, 48, 3336.
20 P. A. Grieco, Y. Yokoyama, G. P. Withers, F. J. Okuniewicz and
C.-L. J. Wang, J. Org. Chem., 1978, 43, 4178.
21 P. A. Grieco, Y. Ohfune and G. Majetich, J. Am. Chem. Soc., 1977, 99,
7393.
22 B. H. Lipshutz, D. Pollart, J. Monteforte and H. Kotsuki, Tetrahedron
Lett., 1985, 26, 705.
Notes and references
23 P. Sarmah and N. C. Barua, Tetrahedron Lett., 1989, 30, 4703.
24 D. H. R. Barton, P. D. Magnus, G. Smith and D. Zurr, Chem.
Commun., 1971, 861.
25 R. Dalpozzo, A. De Nino, L. Maiuolo, M. Nardi, A. Procopsio and
A. Tagarelli, Synthesis, 2004, 496.
1 E. M. Suh and Y. Kishi, J. Am. Chem. Soc., 1994, 116, 11205, and ref. 3
therein.
2 (a) Acc. Chem. Res., 2004, 37, 487 (issue devoted to asymmetric
organocatalysis); (b) Chiral Reagents for Asymmetric Synthesis, ed. L. A.
Paquette, Wiley, Chichester, 2003 (see list of review articles and
monographs); (c) K. Ding, H. Du, Y. Yuan and J. Long, Chem. Eur. J.,
2004, 10, 2872 (see list in ref. 2b).
26 J. J. Brown, R. H. Lenhard and S. Bernstein, J. Am. Chem. Soc., 1964,
86, 2183.
3 A. C. Eliot and J. F. Kirsch, Acc. Chem. Res., 2003, 36, 757.
4 R. H. Abeles, P. A. Frey and W. P. Jencks, Biochemistry; Jones and
Bartlett, Boston, MA, 1992, p. 658.
27 Transforming only one of two identical groups is in fact an easier
problem than transforming only one of two nearly identical groups
because in the former case reaction at either site can give specificity.
This journal is ß The Royal Society of Chemistry 2006
Chem. Commun., 2006, 3235–3237 | 3237