1576
C. Bonini et al.
LETTER
(15) Preparation of the 1-Methylindol-2-yl Phosphoranes
preparation of other variously substituted 9H-pyrido[2,3-
b]indole compounds from appropriate enones and simple
indole precursors. Studies are in progress to explore the
actual scope of our protocol.
2a,b.
2-Azido-1-methylindole (1), freshly obtained after filtration
through a Florisil® pad of the crude product from azido
transfer reaction of 1-methylindole (1 mmol) with tosyl
azide,4 was dissolved in dry Et2O (2 mL) and then slowly
added to an anhyd Et2O solution (2 mL) of PPh3 (1 mmol) at
0 °C under nitrogen. The reaction mixture was stirred at 0 °C
for ca. 1 h after which the separated solid material was
filtered off to give the triphenylphosphorane (2a, 0.7 mmol,
70%) as a dark-yellow powder, mp 90–92 °C. 1H NMR (300
MHz, CDCl3): d = 7.90–7.33 (m, 15 H), 7.20–7.15 (m, 1 H),
7.10–6.95 (m, 1 H), 6.90–6.80 (m, 2 H), 5.15 (s, 1 H), 3.87
(s, 3 H). 13C NMR (50 MHz, CDCl3): d = 149.5, 144.4,
137.0, 134.5, 132.4, 132.0, 131.1, 130.0, 129.3, 127.8,
127.0, 125.5, 125.0, 124.3, 121.5, 118.7, 117.5, 117.0,
114.0, 113.7, 111.0, 109.3, 39.0.
The methyldiphenylphosphorane (2b) was similarly pre-
pared in 55% yield by azidation of 1-methylindole (1 mmol)
followed by direct treatment with methyldiphenylphosphine
(1 mmol). The compound 2b was obtained as a viscous oil
which showed a tendency to decompose under work-up
conditions and was thus employed without purification.
1H NMR (300 MHz, CDCl3): d = 7.95–7.65 (m, 5 H), 7.58–
7.40 (m, 5 H), 7.21–7.18 (m, 1 H), 7.15–7.10 (m, 1 H), 6.90–
6.80 (m, 2 H), 5.20 (s, 1 H), 3.87 (s, 3 H), 2.23 (d, 3 H,
2JPH = 12.8 Hz). 13C NMR (50 MHz, CDCl3): d = 143.6,
141.0, 134.6, 133.0, 132.3, 131.6, 131.5, 130.7, 129.5,
129.2, 129.2, 128.2, 126.1, 125.9, 118.8, 117.0, 116.5,
107.5, 37.0, 14.88.
Acknowledgment
The authors gratefully acknowledge MIUR (Ministry of Instruction,
University and Research-Rome) for financial support (PRIN 2005),
the University of Bologna and the University of Basilicata.
References and Notes
(1) (a) Molina, P.; Vilaplana, M. J. Synthesis 1994, 1197.
(b) Wamhoff, H.; Richardt, G.; Stolben, S. Adv. Heterocycl.
Chem. 1995, 64, 125. (c) Fresneda, P. M.; Molina, P. Synlett
2004, 1.
(2) (a) Molina, P.; Pastor, A.; Vilaplana, M. J. J. Org. Chem.
1996, 61, 8094. (b) Kobayashi, T.; Nitta, M. Chem. Lett.
1981, 1459. (c) Iino, Y.; Nitta, M. Bull. Chem. Soc. Jpn.
1988, 61, 2235. (d) Molina, P.; Pastor, A.; Vilaplana, M. J.
Tetrahedron Lett. 1993, 34, 3773. (e) Molina, P.; Pastor, A.;
Vilaplana, M. J.; Foces-Foces, C. Tetrahedron 1995, 51,
1265.
(3) (a) Degl’Innocenti, A.; Funicello, M.; Scafato, P.; Spagnolo,
P.; Zanirato, P. J. Chem. Soc., Perkin Trans. 1 1996, 2561.
(b) Bonini, C.; Chiummiento, M.; Funicello, M.; Spagnolo,
P. Tetrahedron 2000, 56, 1517. (c) Bonini, C.; D’Auria, M.;
Funicello, M.; Romaniello, G. Tetrahedron 2002, 58, 3507.
(d) Bonini, C.; Funicello, M.; Scialpi, R.; Spagnolo, P.
Tetrahedron 2003, 59, 7515.
(4) (a) Foresti, E.; Spagnolo, P.; Zanirato, P. J. Chem Soc.,
Perkin Trans. 1 1989, 1354. (b) Foresti, E.; Di Gioia, M. T.;
Nanni, D.; Zanirato, P. Gazz. Chim. Ital. 1995, 125, 151.
(5) Molina, P.; Fresneda, P. M.; Sanza, M. A.; Foces-Foces, C.;
De Arellano, M. C. R. Tetrahedron 1998, 54, 9623.
(6) (a) Bhatti, I. A.; Busby, R. E.; Binmohamed, M.; Parrick, J.;
Shaw, C. J. G. J. Chem. Soc., Perkin Trans. 1 1997, 3581.
(b) Kazerani, S.; Novak, S. J. Org. Chem. 1998, 63, 895.
(7) (a) Barun, O.; Patra, P. K.; Ila, H.; Junjappa, H. Tetrahedron
Lett. 1999, 40, 3797. (b) Stolc, S. Life Sci. 1999, 65, 1943.
(8) (a) Meyer, M.; Guyot, M. Tetrahedron Lett. 1996, 37, 4931.
(b) Molina, P.; Fresneda, P. M.; Sanz, M. A. Tetrahedron
Lett. 1997, 38, 6909.
(16) Synthesis of the Carbolines 3a–e. Typical Procedure.
A mixture of the triphenylphosphorane (2a, 1 mmol) and
trans-crotonaldehyde (1 mmol) in dry toluene (5 mL) was
stirred at 70 °C for ca. 20 h under a stream of nitrogen. After
cooling, the solvent was removed in vacuo and the resultant
residue chromatographed on a silica gel column by
progressive elution with PE–EtOAc mixtures to give 4,9-
dimethyl-9H-pyrido[2,3-b]indole (3b,18 80%) as an oil. 1H
NMR (300 MHz, CDCl3): d = 8.40–8.36 (m, 1 H), 8.20–8.15
(m, 1 H), 7.60–7.55 (m, 1 H), 7.40–7.35 (m, 1 H), 7.23 (s, 1
H), 7.15–7.00 (m, 1 H), 4.10 (s, 3 H), 2.94 (s, 3 H). 13C NMR
(50 MHz, CDCl3): d = 153.3, 150.6, 145.8,143.0, 129.4,
125.8, 125.0, 123.1, 117.3, 116.6, 108.3, 30.0, 27.8.
The carbolines 3a17b,17c and 3e14 had physical and/or spectral
data consistent with those previously reported. The hitherto
unknown carbolines 3c,d were identified on the basis of
NMR and MS data as well as elemental analysis.
(17) (a) Zhestkov, V. P.; Druzhinina, V. V.; Rudnitskikh, A. V.
Khim. Geterotsikl. Soedin. 1995, 1507; Chem. Abstr. 1996,
125, 33513x. (b) Clark, V. M.; Cox, A.; Herbert, E. J. J.
Chem. Soc. C 1968, 831. (c) Eiter, K.; Nagy, M. Monatsh.
Chem. 1949, 80, 607. (d) Eiter, K. Monatsh. Chem. 1948,
79, 17.
(18) Abramenko, P. I. Zhurnal Vses. Khim. Obshch. im. D.I.
Mendeleeva 1973, 18, 715; Chem. Abstr. 1974, 80, 95788b.
(19) Replacement of phenyl with methyl group(s) on phosphorus
could enhance the reactivity of our previous benzothiophen-
2-yl and, especially, benzothiophen-3-yl phosphoranes with
enones, see ref. 3b,3c.
(9) (a) Achab, S.; Guyot, M.; Potier, P. Tetrahedron Lett. 1995,
36, 2615. (b) Rocca, P.; Marsais, S.; Godard, A.; Queguiner,
G. Tetrahedron 1993, 49, 49.
(10) Tahri, A.; Buysens, K. J.; Van der Eycken, E. V.;
Vandenberghe, D. M.; Hoornaen, G. J. Tetrahedron 1998,
54, 13211.
(11) (a) Molina, P.; Alajarin, M.; Vidal, A.; Sanchez-Andrada, P.
J. Org. Chem. 1992, 57, 929. (b) Molina, P.; Fresneda, P.
M. Synthesis 1989, 878.
(12) Erba, E.; Gelmi, M. L.; Pocar, D. Tetrahedron 2000, 56,
9991.
(13) Beccalli, E. M.; Clerici, F.; Marchesini, A. Tetrahedron
2001, 57, 4787.
(14) Tanaka, K.; Kitamura, M.; Narasaka, K. Bull. Chem. Soc.
Jpn. 2005, 78, 1659.
Synlett 2006, No. 10, 1574–1576 © Thieme Stuttgart · New York