4 For recent exemplars: (a) Z. Gan, P. T. Reddy, S. Quevillon, S. Couve-
Bonnaire and P. Arya, Angew. Chem., Int. Ed., 2005, 44, 1366–1368; (b)
R. S. Dothager, K. S. Putt, B. J. Allen, B. J. Leslie, V. Nesterenko and
P. J. Hergenrother, J. Am. Chem. Soc., 2005, 127, 8686–8696; (c)
G. D. Geske, R. J. Wezeman, A. P. Siegel and H. E. Blackwell, J. Am.
Chem. Soc., 2005, 127, 12762–12763; (d) B. Clique, J. Colley,
A. Ironmonger, A. Nelson, P. Stockley, J. Titchmarsh and
B. Whittaker, Org. Biomol. Chem., 2005, 3, 2776–2785; (e)
T. Leßmann and H. Waldmann, Chem. Commun., 2006, DOI:
10.1039/b602822e.
5 (a) M. D. Burke and S. L. Schreiber, Science, 2003, 302, 613–618; (b)
S. J. Taylor, A. M. Taylor and S. L. Schreiber, Angew. Chem., Int. Ed.,
2004, 43, 1681–1685; (c) H. Oguri and S. L. Schreiber, Org. Lett., 2005,
7, 47–50; (d) N. Kumar, M. Kiuchi, J. A. Tallarico and S. L. Schreiber,
Org. Lett., 2005, 7, 2535–2538; (e) C. T. Calderone and D. R. Liu,
Angew. Chem., Int. Ed., 2005, 44, 7383–7386; (f) J. M. Mitchell and
J. T. Shaw, Angew. Chem., Int. Ed., 2006, 45, 1722–1726; (g)
N. Kumagai, G. Muncipinto and S. L. Schreiber, Angew. Chem., Int.
Ed., 2006, 45, 3635–3638.
6 P. M. Dewick, Medicinal Natural Products: A Biosynthetic Approach,
Wiley, Chichester, 2001. It should be emphasized that acetyl coenzyme
A and the fluorous tagged diazoacetate are used in different ways
synthetically: the diazoacetate is only used once, whereas acetyl CoA is
used iteratively.
7 M. P. Doyle, M. A. McKervey and T. Ye, Modern Catalytic Methods
for Organic Synthesis with Diazo Compounds, Wiley-Interscience,
New York, 1998.
8 For reviews see: (a) A. Studer, S. Haddida, R. Ferritto, S.-Y. Kim,
P. Jeger, P. Wipf and D. P. Curran, Science, 1997, 275, 823–826; (b)
D. P. Curran, in The Handbook of Fluorous Chemistry (Eds.: J. A.
Gladysz, D. P. Curran and I. T. Horvath), Wiley-VCH, Weinheim,
2004, pp. 101–155; (c) W. Zhang, Chem. Rev., 2004, 104, 2531–2556; (d)
D. P. Curran, Aldrichimica Acta, 2006, 39, 3–9.
9 (a) E. Bu¨chner and T. Curtius, Ber. Dtsch. Chem. Ges., 1885, 18,
2371–2377; (b) A. J. Anciaux, A. Demonceau, A. F. Noels, N. Petinoit
and P. Teyssie´, J. Chem. Soc., Chem. Commun., 1980, 765–766; (c)
A. J. Anciaux, A. Demonceau, A. F. Noels, A. J. Hubert, R. Warin and
P. Teyssie´, J. Org. Chem., 1981, 46, 873–876.
Fig. 2 Visual representation of the diversity of different chemical
collections in physicochemical and topological space using MOE
descriptors followed by principal component analysis (PCA). The DOS
library synthesized in this paper is depicted in small diamonds. For
comparison, a focused library (small squares) and the MDL Drug Data
Repository (small grey dots) are depicted. Library diversity can be
described as the standard deviation of properties in this PCA space,
normalized to a per-compound-basis. Normalization to give a value of
100% for the most diverse library (MDDR) gives values of 40% for the
DOS library and 3% for the focused library. The DOS library spans a
large part of chemical space, illustrating the value of our diversity-oriented
synthesis approach to deliver diverse products.
10 R. H. Kline, J. Wright, K. M. Fox and M. E. Eldefrawi, J. Med. Chem.,
1990, 33, 2024–2027.
11 C. V. Galliford, M. A. Beenen, S. T. Nguyen and K. A. Scheidt, Org.
Lett., 2003, 5, 3487–3490.
12 J. J. V. Eynde, N. Hecq, O. Kataeva and C. O. Kappe, Tetrahedron,
2001, 57, 1785–1791.
13 Since the final steps of the synthesis removed the fluorous tag, all
compounds were separated from tag using techniques such as fluorous
solid-phase extraction (SPE). In approximately 40% of examples the
products were not of sufficient purity, and were therefore purified
further.
Trust (A.B.) and BBSRC. We also acknowledge the EPSRC
National Mass Spectrometry Service Centre, Swansea, for
providing mass spectrometric data.
Notes and references
1 (a) S. L. Schreiber, Chem. Eng. News, 2003, 81, 51–61; (b) D. R. Spring,
Chem. Soc. Rev., 2005, 34, 472–482 and references therein.
2 (a) R. Breinbauer, I. R. Vetter and H. Waldmann, Angew. Chem., Int.
Ed., 2002, 41, 2878–2890; (b) J. Clardy and C. Walsh, Nature, 2004, 432,
829–837.
3 (a) S. L. Schreiber, Science, 2000, 287, 1964–1969; (b) D. R. Spring, Org.
Biomol. Chem., 2003, 1, 3867–3870; (c) M. D. Burke and S. L. Schreiber,
Angew. Chem., Int. Ed., 2004, 43, 46–58; (d) D. S. Tan, Nat. Chem. Biol.,
2005, 1, 74–84; (e) P. Arya, R. Joseph, Z. Gan and B. Rakic, Chem.
Biol., 2005, 12, 163–180.
15 R. Faghih, W. Dwight, J. Bao Pan, G. B. Fox, K. M. Krueger,
T. A. Esbenshade, J. M. McVey, K. Marsh, Y. L. Bennani and
A. A. Hancock, Bioorg. Med. Chem. Lett., 2003, 13, 1325–1328.
16 Staphylococcus aureus strain MRSA-15 (common pathogenic strain in
UK hospitals) were used for inhibition of proliferation phenotypic
experiments. Compounds modulated growth over a range of concentra-
tions: 100 mM concentration (29%), 50 mM (6%), 25 mM (4%), 10 mM
(2%). The most active compounds were found to have Minimal
Inhibitory Concentrations (MIC) of 3.56 and 6.05 mg/ml.
3298 | Chem. Commun., 2006, 3296–3298
This journal is ß The Royal Society of Chemistry 2006