monitored by using a fluorescence microplate reader. Although
full saturations of the fluorescence intensity were not observed in
the live cell uptake experiments, methylmercury can clearly enter
the cells within 30–40 min as shown in Fig. 4.
demonstrated the detection of methylmercury in living cells and
organisms.
Acknowledgements
This work is funded by the Korea Science and Engineering
Foundation (KOSEF) grant funded by the Korea govern-
ment (MEST) (No. R01-2008-000-10245-0 and R32-2008-000-
10217-0).
Notes and references
1 (a) W. F. Fitzgerald, D. R. Engstrom, R. P. Manson and E. A. Nater,
Environ. Sci. Technol., 1998, 32, 1; (b) W. F. Fitzgerald, C. H. Lamgorg
and C. R. Hammerschmidt, Chem. Rev., 2007, 107, 641.
2 (a) S. Jensen and A. Jernelo¨v, Nature, 1969, 223, 753; (b) V. Celo, D. R. S.
Lean and S. L. Scott, Sci. Total Environ., 2006, 368, 126.
3 T. W. Clarkson and L. Magos, Crit. Rev. Toxicol., 2006, 36, 609.
4 H. H. Harris, I. J. Pickering and G. N. George, Science, 2003, 301, 1203.
5 (a) J. W. Allen, G. Shanker, K. H. Tan and M. Aschner, NeuroToxicol-
ogy, 2002, 23, 755; (b) M. Aschner, Environ. Toxicol. Pharmacol., 2002,
12, 101.
Fig. 4 Real-time monitoring of methylmercury uptake in live cells.
Real-time monitoring of CH3Hg+ (0 (ꢀ), 10 (᭹), 20 (ꢀ), 40 (᭢), 100
(᭜), and 200 (ꢁ) mM) uptakes by (A) HeLa cells and (B) A549 cells
using 1 (20 mM). The fluorescence intensity changes in the cells were
continuously monitored by a fluorescence microplate reader (excitation
at 500 nm, emission at 560 nm).
6 (a) I. Onyido, A. R. Norris and E. Buncel, Chem. Rev., 2004, 104, 5911;
(b) M. Bertossi, F. Girolamo, M. Errede, D. Virgintino, G. Elia, L.
Ambrosi and L. Roncali, NeuroToxicology, 2004, 25, 849.
7 T. M. Burbacher, P. M. Rodier and B. Weiss, Neurotoxicol. Teratol.,
1990, 12, 191.
Encouraged by the live cell experiments, we examined if
chemosensor 1 could be used to detect methylmercury in living
organisms. Four-day old zebrafish was first incubated with 20 mM
of 1 for 30 min at 28 ◦C and then exposed to 20 mM of CH3HgCl
for 10 min after removal of the remaining chemosensor. While the
zebrafish treated with only probe 1 did not show any fluorescence
(Fig. 5c, d), the zebrafish treated with both CH3HgCl and 1
displayed strong red fluorescence (Fig. 5e, f). Interestingly, strong
fluorescence intensity was observed in the eye lens and liver regions
as shown in Fig. 5e, f.18 We were able to image zebrafish19 incubated
in 100 nM CH3HgCl media without any problems by this method
(see ESI†).
8 (a) F. Bakir, S. F. Damluji, L. Amin-Zaki, M. Murtadha, A. Khalidi,
N. Y. Al-Rawi, S. Tikriti, H. I. Dhahir, T. W. Clarkson, J. C. Smith and
R. A. Doherth, Science, 1973, 181, 230; (b) K. Eto, H. Tokunaga, K.
Nagashima and T. Takeuchi, Toxicol. Pathol., 2002, 30, 714.
9 (a) A. F. Castoldi, T. Coccini, S. Ceccatelli and L. Manzo, Brain Res.
Bull., 2001, 55, 197; (b) G. Shanker, L. A. Mutkus, S. J. Walker and M.
Aschner, Mol. Brain Res., 2002, 106, 1.
10 (a) H. Strasdeit, Angew. Chem., Int. Ed., 2008, 47, 828; (b) J. G.
Omichinski, Science, 2007, 317, 205; (c) J. G. Melnick and G. Parkin,
Science, 2007, 317, 225; (d) G. W. Hwang, Y. Ishida and A. Naganuma,
FEBS Lett., 2006, 580, 6813; (e) P. Gonzalez, Y. Dominique, J. C.
Massabuau, A. Boudou and J. P. Bourdineaud, Environ. Sci. Technol.,
2005, 39, 3972; (f) S. A. Counter and L. H. Buchanan, Toxicol. Appl.
Pharmacol., 2004, 198, 209; (g) P. Grandjean, P. Weihe, R. F. White
and F. Debes, Environ. Res. Sec. A, 1998, 77, 165; (h) P. W. Davidson,
G. J. Myers, C. Cox, C. F. Shamlaye, D. O. Marsh, M. A. Tanner, M.
Berlin, J. Sloane-Reeves, E. Cernichiari, O. Choisy, A. Choi and T. W.
Clarkson, Neurotoxicol., 1995, 16, 677.
11 (a) E. M. Nolan and S. J. Lippard, Chem. Rev., 2008, 108, 3443; (b) D.
Wu, W. Huang, Z. Lin, C. Duan, C. He, S. Wu and D. Wang, Inorg.
Chem., 2008, 47, 7190; (c) R. Shunmugam, G. J. Gabriel, C. E. Smith,
K. A. Aamer and G. N. Tew, Chem.–Eur. J., 2008, 14, 3904; (d) H. N.
Lee, H. N. Kim, K. M. K. Swamy, M. S. Park, J. Kim, H. Lee, K. H.
Lee, S. Park and J. Yoon, Tetrahedron Lett., 2008, 49, 1261; (e) D. Wu,
A. B. Descalzo, F. Weik, F. Emmerling, Z. Shen, X. Z. You and K.
Rurack, Angew. Chem., Int. Ed., 2008, 47, 193; (f) E. M. Nolan and S. J.
Lippard, J. Am. Chem. Soc., 2007, 129, 5910; (g) J. H. Soh, K. M. K.
Swamy, S. K. Kim, S. Kim, S. H. Lee and J. Yoon, Tetrahedron Lett.,
2007, 48, 5966.
12 (a) I. B. Kim and U. H. F. Bunz, J. Am. Chem. Soc., 2006, 128, 2818;
(b) Y. Zhao and Z. Zhong, J. Am. Chem. Soc., 2006, 128, 9988; (c) Y.
Zhao and Z. Zhong, Org. Lett., 2006, 8, 4715; (d) L. J. Fan, Y. Zhang and
W. E. Jr, Jones, Macromolecules, 2005, 38, 2844; (e) E. Coronado, J. R.
Gala´n-Mascaro´s, C. Mart´ı-Gastaldo, E. Palomares, J. R. Durrant, R.
Vilar, M. Gratzel and M. K. Nazeeruddin, J. Am. Chem. Soc., 2005, 127,
12351; (f) F. Palomares, R. Vilar and J. R. Durrant, Chem. Commun.,
2004, 362.
Fig. 5 Microscopic and fluorescent images of zebrafish. The 4-day old
zebrafish was treated with probe 1 (20 mM) for 30 min, washed with
PBS-buffer to remove the remaining chemosensors, and incubated with
CH3HgCl for 10 min. Dorsal (a, c, e) and lateral views (b, d, f); (a,
b) microscopic images of zebrafish treated with probe 1 and CH3HgCl
(20 mM). (c, d) Fluorescent images of zebrafish treated with probe 1 in the
absence of CH3HgCl. (e, f) Fluorescent images of zebrafish treated with
probe 1 and CH3HgCl.
13 (a) G. K. Darbha, A. K. Singh, U. S. Rai, E. Yu, H. Yu and P. C. Ray,
J. Am. Chem. Soc., 2008, 130, 8038; (b) M. Hollenstein, C. Hipolito,
C. Lam, D. Dietrich and D. M. Perrin, Angew. Chem., Int. Ed., 2008,
47, 4346; (c) C. W. Liu, Y. T. Hsieh, C. C. Huang, Z. H. Lin and H. T.
Chang, Chem. Commun., 2008, 2242; (d) Z. Wang, J. H. Lee and Y. Lu,
Chem. Commun., 2008, 6005; (e) C. W. Liu, C. C. Huang and H. T.
Chang, Langmuir, 2008, 24, 8346; (f) H. Wang, Y. Wang, J. Jin and R.
Yang, Anal. Chem., 2008, 80, 9021; (g) J. S. Lee, M. S. Han and C. A.
In summary, we have described an irreversible chemosensor
for the detection of methylmercury species in live cells and
zebrafish. The rhodamine thiosemicarbazide probe, which reacts
irreversibly with methylmercury via a desulfurization reaction, can
detect methylmercury with high sensitivity in aqueous media.
Fluorescent imaging of HeLa cells and zebrafish successfully
4592 | Org. Biomol. Chem., 2009, 7, 4590–4593
This journal is
The Royal Society of Chemistry 2009
©