18
A.C. Brooks et al. / Journal of Catalysis 285 (2012) 10–18
the formation of the ethyl trans-a-cyanocinnamate product. The
References
observation of increased performance for not fully exchanged zeo-
lite samples also suggests the necessity of some acid sites being
present that enhance the catalytic performance of the newly devel-
oped catalysts. Schemes 4 and 5 illustrate proposed mechanisms
that utilises acid (h-beta) and base (mel-100-beta) catalysts
respectively. The possible role of the melaminium cation as a basic
catalyst is shown in the upper part of Scheme 5. Although the med-
ium of pKb measurements are different to our reaction medium, it
can be noted that melamine has a first pKb of 9, and though the pKb
of its second protonation is not reported, a range of its deproto-
nated salts are easily prepared.
In our case (over mel-20-beta), a combination of these steps is
speculated to be operating (Scheme 6). Active methylene groups
upon deprotonation would react with the activated benzaldehyde,
leading to the synthesis of the condensation product and a mole-
cule of water. Indeed, a synergistic effect of acidic and basic sites
has also been suggested for Aldol condensations over mesoporous
materials with sulphonate and amine groups [14]. The sulphonate
group in this case was suggested to aid the reaction via deprotona-
tion–protonation of the acetone. This would be congruent with our
results as zeolite beta in its acidic form produced poor conversions.
Converting the majority of the acidic sites of the zeolite beta cata-
lyst to basic sites using 100 mol% melamine based on aluminium
content also produced a poor conversion. Besides a synergistic ef-
fect, the increased coverage could cause diffusion problems and
thereby the converted products and the reactants would have
greater difficulty exiting and entering the pore channels of the
catalyst.
[1] S. Feast, J.A. Lercher, in: H. Chon, S.I. Woo, S.E. Park (Eds.), Recent Advances
and New Horizons in Zeolite Science and Technology, Elsevier Science Publ. BV,
Amsterdam, 1996, pp. 363–412.
[2] K. Tanabe, W.F. Holderich, Appl. Catal. A – Gen. 181 (1999) 399–434.
[3] Y. Okamoto, M. Ogawa, A. Maezawa, T. Imanaka, J. Catal. 112 (1988) 427–
436.
[4] R.J. Davis, J. Catal. 216 (2003) 396–405.
[5] L.R.M. Martens, P.J. Grobet, P.A. Jacobs, Nature 315 (1985) 568–570.
[6] F. Winter, M. Wolters, A.J. van Dillen, K.P. de Jong, Appl. Catal. A – Gen. 307
(2006) 231–238.
[7] H. Mei, M. Hu, H.X. Ma, H.Q. Yao, J. Shen, Fuel Process. Technol. 88 (2007) 343–
348.
[8] J.H. Kwak, J. Szanyi, C.H.F. Peden, Catal. Today 89 (2004) 135–141.
[9] T. Seki, M. Onaka, J. Mol. Catal. A – Chem. 263 (2007) 115–120.
[10] A. Derrien, G. Renard, D. Brunel, Mesoporous Mol. Sieves (1998) 445–452.
[11] S. Jaenicke, G.K. Chuah, X.H. Lin, X.C. Hu, Microporous Mesoporous Mater. 35–
36 (2000) 143–153.
[12] X.H. Lin, G.K. Chuah, S. Jaenicke, J. Mol. Catal. A – Chem. 150 (1999) 287–
294.
[13] B.M. Choudary, M.L. Kantam, P. Sreekanth, T. Bandopadhyay, F. Figueras, A.
Tuel, J. Mol. Catal. A – Chem. 142 (1999) 361–365.
[14] K. Narasimharao, M. Hartmann, H.H. Thiel, S. Ernst, Microporous Mesoporous
Mater. 90 (2006) 377–383.
[15] J. Zhou, Z. Hua, J. Zhao, Z. Gao, S.Z. Zeng, J.L. Shi, J. Mater. Chem. 20 (2010)
6764–6771.
[16] L. Martins, D. Cardoso, Microporous Mesoporous Mater. 106 (2007) 8–16.
[17] M.J. Climent, A. Corma, S. Iborra, A. Velty, J. Mol. Catal. A – Chem. 182 (2002)
327–342.
[18] R.K. Zeidan, M.E. Davis, J. Catal. 247 (2007) 379–382.
[19] A. Corma, V. Fornes, R.M. Martinaranda, H. Garcia, J. Primo, Appl. Catal. 59
(1990) 237–248.
[20] L. Costa, G. Camino, J. Thermal Anal. Calorimetry 34 (1988) 423–429.
[21] CIPCS, Melamine, International Programme on Chemical Safety, 2005.
[22] S. Chen, Y. Yang, K. Zhang, J. Wang, Catal. Today 116 (2006) 2–5.
[23] J.M. Newsam, M.M.J. Treacy, W.T. Koetsier, C.B.D. Gruyter, Proc. Roy. Soc. Lond.
A Math. Phys. Sci. 420 (1988) 375–405.
Using our data and literature, we can infer that a synergistic ef-
fect may be operational between the melamine base sites and the
protonic acid sites. Scheme 6 outlines a likely mechanism, where
the reaction between the deprotonated cyanoester and the proton-
ated benzaldehyde ion is expected to increase the reactivity.
[24] M.M.J. Treacy, J.M. Newsam, Nature 332 (1988) 249–251.
[25] A. Hayashi, H. Nakayama, M. Tsuhako, Solid State Sci. 11 (2009) 1007–1015.
[26] M.L.M. Bonati, R.W. Joyner, M. Stockenhuber, Microporous Mesoporous Mater.
104 (2007) 217–224.
[27] L. Martins, K.M. Vieira, L.M. Rios, D. Cardoso, Catal. Today 133-135 (2008) 706–
710.
[28] L. Martins, W. Hoelderich, D. Cardoso, J. Catal. 258 (2008) 14–24.
[29] T. Hasegawa, C.K. Krishnan, M. Ogura, Microporous Mesoporous Mater. 132
(2010) 290–295.
4. Conclusions
[30] F.H. Allen, Acta Crystallogr. Sect. B – Struct. Sci. 58 (2002) 380–388.
[31] H.P. Jing, M. Strobele, M. Weisser, H.J. Meyer, Zeitschrift Fur Anorganische Und
Allgemeine Chemie 629 (2003) 368–370.
[32] J. Janczak, G.J. Perpetuo, Acta Crystallogr. Sect. C – Crystal Struct. Commun. 57
(2001) 1431–1433.
[33] K. Wijaya, O. Moers, D. Henschel, A. Blaschette, P.G. Jones, Zeitschrift Fur
Naturforschung (Section B – A J. Chem. Sci.) 59 (2004) 747–756.
[34] G.J. Perpetuo, J. Janczak, Acta Crystallogr. Sect. C – Crystal Struct. Commun. 62
(2006) O372–O375.
[35] A. Heine, K. Gloe, T. Doert, Zeitschrift Fur Anorganische Und Allgemeine
Chemie 634 (2008) 452–456.
Simple modification of NH4-beta zeolite with melamine leads to
a catalyst containing extremely stable cationic melamine species in
the cavities of the zeolite. This hybrid material is basic in nature. It
exhibits good performance in the Knoevenagel condensation of
benzaldehyde and ethyl cyanoacetate. The reaction rate, as well
as the conversion of 93% was either comparable or significantly im-
proved compared with other alkaline catalysts reported in the lit-
erature and to an acidic beta zeolite catalyst. We observed initial
high rates that were higher than the initial reaction rates shown
by the hydrotalcite and the MgO/Al2O3 catalysts. The activity in
the condensation reaction is dependent on the amount and nature
of acidic and basic sites present. The general stability of the cata-
lyst shows potential for application to industrial scale reactions
requiring mild basic and normally higher temperature conditions.
[36] A. Martin, A.A. Pinkerton, Acta Crystallogr. Sect. C – Crystal Struct. Commun. 51
(1995) 2174–2177.
[37] R.V. Siriwardane, M.S. Shen, E.P. Fisher, Energy Fuels 19 (2005) 1153–1159.
[38] M. Stockenhuber, J.A. Lercher, Microporous Mater. 3 (1995) 457–465.
[39] J. Howard, P.J. Lux, J. Yarwood, Zeolites 8 (1988) 427–431.
[40] S. Akyuz, T. Akyuz, J. Incl. Phenom. Macrocyc. Chem. 48 (2004) 75–80.
[41] S. Saravanamurugan, M. Palanichamy, M. Hartmann, V. Murugesan, Appl.
Catal. A – Gen. 298 (2006) 8–15.
[42] R.W. Joyner, A.D. Smith, M. Stockenhuber, M.W.E. van den Berg, Phys. Chem.
Chem. Phys. 6 (2004) 5435–5439.
[43] A.B. Wiles, D. Bozzuto, C.L. Cahill, R.D. Pike, Polyhedron 25 (2006) 776–782.
[44] C.J. Pouchert, The Aldrich Library of Infrared Spectra. Aldrich Chemical
Company, Milwaukee, WI, 1997, 5100.
[45] D. Lin-Vien, N.B. Colthup, W.G. Fateley, J.G. Graselli, The Handbook of Infrared
and Raman Characteristic Frequencies of Organic Molecules, Academic Press,
San Diego, CA, 1991. 503.
[46] J. Pironon, M. Pelletier, P. de Donato, R. Mosser-Ruck, Clay Minerals 38 (2003)
201–211.
[47] X.F. Zhang, E.S.M. Lai, R. Martin-Aranda, K.L. Yeung, Appl. Catal. A – Gen. 261
(2004) 109–118.
Acknowledgments
Financial support by Nottingham Trent University, UK and The
University of Newcastle, Australia is gratefully acknowledged.
The authors would like to thank Prof. B.Z. Dlugogorski, Prof. E.M.
Kennedy and Prof. R.W. Joyner for useful discussions. We also
acknowledge the use of CDS and the X-ray suite at UN and the Aus-
tralian synchrotron and the SRS for the use of the facilities to deter-
mine aluminium EXAFS of the zeolite beta.
[48] K. Komura, T. Kawamura, Y. Sugi, Catal. Commun. 8 (2007) 644–648.