Highly Stereoselective Synthesis of Z-Enamides
A R T I C L E S
enamides. Conventional approaches include addition of amides
to alkynes,8 condensation of ketones or aldehydes with amides,9
elimination of alcohols from N-(R-alkoxyalkyl)amides,10 dehy-
dration of hemiaminal,11 acylation of imines,12 Curtius rear-
rangement of R,â-unsaturated acyl azides,13 and elimination of
â-hydroxy-R-silylamides (Peterson reaction).14
On the other hand, several catalytic routes have been also
investigated, such as isomerization of N-allylamides by Fe, Rh,
or Ru complexes15 and Rh-catalyzed â-hydride elimination of
diazoamides.16 Additionally, metal-mediated C-N bond forma-
tion has been an area of great interest, and some protocols have
been developed, including Ru- or Cu-catalyzed addition of
amides to alkynes17 and coupling of vinyl (pseudo)halides with
amides using Pd18 or Cu species.19 Despite the numerous
examples for the catalytic synthesis of enamides, such reactions
often suffer from either low yield or difficulty in preparing
necessary vinyl halides. More importantly, stereocontrol of the
double bond presents an additional challenge, particularly when
Z-enamides are required.20-23 This is especially noteworthy,
considering that significant progress has been made recently in
direct oxidative amination of olefins with simple amines.24 For
example, Hirai et al. previously reported an amidation protocol
using a stoichiometric palladium complex.25 Murahashi and co-
workers later demonstrated that enamides could be readily
obtained by the reaction of amides or carbamates with olefins
using Pd and Cu cocatalysts under an oxygen atmosphere.26
However, reaction of lactams or cyclic carbamates afforded
predominantly E-enamides, whereas a mixture of isomeric
enamides was obtained with acyclic amides. More recently, Stahl
et al. have contributed to a significant advance by expanding
the scope of the nucleophiles, including oxazolidinone, phthal-
imide, secondary amide, and sulfonamide, in amination of
simple olefins via either Markovnikov or anti-Markovnikov
manner by the choice of catalyst system, although the require-
ment for excess amounts of certain types of olefins and low
product yields in some cases leave room for further improve-
ments.27,28
Despite the recent progress, there are still several issues to
be addressed, such as substrate scope, stereoselectivity, and
mildness of reaction conditions for the efficient preparation of
enamides. Therefore, direct oxidatiVe amidation of alkenes
instead of Vinyl halides would be highly desirable, especially if
it yields high stereoselectiVity in the formation of enamides
under mild conditions. In this article, we reveal our studies on
the development of such a straightforward method for producing
Z-enamides with high stereoselectivity through a hydrogen-
bond-directed approach (eq 1).29
(7) (a) Xiao, D.; Zhang, Z.; Zhang, X. Org. Lett. 1999, 1, 1679-1681. (b)
Burk, M. J. Acc. Chem. Res. 2000, 33, 363-372. (c) Sibi, M. P.; Asano,
Y. J. Am. Chem. Soc. 2001, 123, 9708-9709. (d) Blaser, H.-U.; Malan,
C.; Pugin, B.; Spindler, F.; Steiner, H.; Studer, M. AdV. Synth. Catal. 2003,
345, 103-151.
(8) Mo¨hrle, H.; Kilian, R. Tetrahedron 1969, 25, 5745-5753.
(9) (a) Couture, A.; Deniau, E.; Grandclaudon, P. Tetrahedron Lett. 1993, 34,
1479-1482. (b) Dupau, P.; Le Gendre, P.; Brueau, C.; Dixneuf, P. H.
Synlett 1999, 1832-1834.
(10) (a) Shono, T.; Matsumura, Y.; Tsubata, K.; Sugihara, Y.; Yamane, S.-i.;
Kanazawa, T.; Aoki, T. J. Am. Chem. Soc. 1982, 104, 6697-6703. (b)
Torii, S.; Inokuchi, T.; Kubota, M. J. Org. Chem. 1985, 50, 4157-4160.
(11) (a) Wang, X.; Porco, J. A., Jr. J. Org. Chem. 2001, 66, 8215-8221. (b)
Bayer, A.; Maier, M. E. Tetrahedron 2004, 60, 6665-6677.
(12) (a) Boeckman, R. K., Jr.; Goldstein, S. W.; Walters, M. A. J. Am. Chem.
Soc. 1988, 110, 8250-8252. (b) Speckamp, W. N.; Moolenaar, M. J.
Tetrahedron 2000, 56, 3817-3856. (c) Kinderman, S. S.; van Maarseveen,
J. H.; Schoemaker, H. E.; Hiemstra, H.; Rutjes, F. P. J. T. Org. Lett. 2001,
3, 2045-2048.
(13) (a) Brettle, R.; Mosedale, A. J. J. Chem. Soc., Perkin Trans. 1 1988, 2185-
2195. (b) Kuramochi, K.; Watanabe, H.; Kitahara, T. Synlett 2000, 397-
399. (c) Stefanuti, I.; Smith, S. A.; Taylor, R. J. K. Tetrahedron Lett. 2000,
41, 3735-3738.
(14) (a) Ager, D. J. Synthesis 1984, 384-398. (b) Ager, D. J. Org. React. 1990,
38, 1-223. (c) Fu¨rstner, A.; Brehm, C.; Cancho-Grande, Y. Org. Lett. 2001,
3, 3955-3957.
(15) (a) Stille, J. K.; Becker, Y. J. Org. Chem. 1980, 45, 2139-2145. (b)
Sergeyev, S.; Hesse, M. Synlett 2002, 1313-1317. (c) Sergeyev, S. A.;
Hesse, M. HelV. Chim. Acta 2003, 86, 750-755.
(16) Muthusamy, S.; Gunanathan, C.; Babu, S. A. Synthesis 2002, 471-474.
(17) (a) Kondo, T.; Tanaka, A.; Kotachi, S.; Watanabe, Y. J. Chem. Soc., Chem.
Commun. 1995, 413-414. (b) Zhou, Y.-G.; Yang, P.-Y.; Han, X.-W. J.
Org. Chem. 2005, 70, 1679-1683. (c) Goossen, L. J.; Rauhaus, J. E.; Deng,
G. Angew. Chem., Int. Ed. 2005, 44, 4042-4045.
Results and Discussion
At the outset of our studies on the oxidative amidation
reaction, benzamide (1) and ethyl acrylate (2) were chosen as
model substrates, and various reaction conditions were subse-
quently examined (Table 1). We were especially interested in
(18) For recent examples, see: (a) Wallace, D. J.; Klauber, D. J.; Chen, C.-y.;
Volante, R. P. Org. Lett. 2003, 5, 4749-4752. (b) Brice, J. L.; Meerdink,
J. E.; Stahl, S. S. Org. Lett. 2004, 6, 1845-1848. (c) Klapars, A.; Campos,
K. R.; Chen, C.-y.; Volante, R. P. Org. Lett. 2005, 7, 1185-1188. (d) Willis,
M. C.; Brace, G. N.; Holmes, I. P. Synthesis 2005, 3229-3234. Review:
(e) Dehli, J. R.; Legros, J.; Bolm, C. Chem. Commun. 2005, 973-986.
(19) For recent examples, see: (a) Ogawa, T.; Kiji, T.; Hayami, K.; Suzuki,
H. Chem. Lett. 1991, 1443-1446. (b) Shen, R.; Porco, J. A., Jr. Org. Lett.
2000, 2, 1333-1336. (c) Shen, R.; Lin, C. T.; Bowman, E. J.; Bowman,
B. J.; Porco, J. A., Jr. J. Am. Chem. Soc. 2003, 125, 7889-7901. (d) Jiang,
L.; Job, G. E.; Klapars, A.; Buchwald, S. L. Org. Lett. 2003, 5, 3667-
3669. (e) Lam, P. Y. S.; Vincent, G.; Bonne, D.; Clark, C. G. Tetrahedron
Lett. 2003, 44, 4927-4931. (f) Coleman, R. S.; Liu, P.-H. Org. Lett. 2004,
6, 577-580. (g) Pan, X.; Cai, Q.; Ma, D. Org. Lett. 2004, 6, 1809-1812.
(h) Sun, C.; Camp, J. E.; Weinreb, S. M. Org. Lett. 2006, 8, 1779-1781.
(20) For the formation of Z-enamides relying on a rearrangement-hydrolysis
of R-silylallyl amides, see: (a) Zhang, X.; Houk, K. N.; Lin, S.;
Danishefsky, S. J. J. Am. Chem. Soc. 2003, 125, 5111-5114. (b) Lin, S.;
Yang, Z.-Q.; Kwok, B. H. B.; Koldobskiy, M.; Crews, C. M.; Danishefsky,
S. J. J. Am. Chem. Soc. 2004, 126, 6347-6355.
(23) Porco et al. demonstrated that copper-catalyzed coupling of primary amides
with E-vinyl iodides bearing a â-amide group afforded Z-enamides albeit
in rather low yields (18-25%). It was reasoned that the stereocontrol was
related to the higher acidity of the N-H in conjugated amides, thus leading
to the formation of an intramolecular H-bond. Han, C.; Shen, R.; Su, S.;
Porco, J. A., Jr. Org. Lett. 2004, 6, 27-30.
(24) For intramolecular oxidative amination reactions, see: (a) van Benthem,
R. A. T. M.; Hiemstra, H.; Longarela, G. R.; Speckamp, W. N. Tetrahedron
Lett. 1994, 35, 9281-9284. (b) Ro¨nn, M.; Ba¨ckvall, J.-E.; Andersson, P.
G. Tetrahedron Lett. 1995, 36, 7749-7752. (c) Larock, R. C.; Hightower,
T. R.; Hasvold, L. A.; Peterson, K. P. J. Org. Chem. 1996, 61, 3584-
3585. (d) Fix, S. R.; Brice, J. L.; Stahl, S. S. Angew. Chem., Int. Ed. 2002,
41, 164-166. (e) Trend, R. M.; Ramtohul, Y. K.; Ferreira, E. M.; Stoltz,
B. M. Angew. Chem., Int. Ed. 2003, 42, 2892-2895.
(25) Hirai, H.; Sawai, H. Bull. Chem. Soc. Jpn. 1970, 43, 2208-2213.
(26) Hosokawa, T.; Takano, M.; Kuroki, Y.; Murahashi, S.-I. Tetradedron Lett.
1992, 33, 6643-6646.
(27) (a) Timokhin, V. I.; Anastasi, N. R.; Stahl, S. S. J. Am. Chem. Soc. 2003,
125, 12996-12997. (b) Brice, J. L.; Harang, J. E.; Timokhin, V. I.; Anastasi,
N. R.; Stahl, S. S. J. Am. Chem. Soc. 2005, 127, 2868-2869. (c) Timokhin,
V. I.; Stahl, S. S. J. Am. Chem. Soc. 2005, 127, 17888-17893.
(28) For a recent example of Pd-catalyzed intramolecular oxidative amidation
of an unactivated double bond using p-benzoquinone as a reoxidant, see:
Abbiati, G.; Beccalli, E.; Broggini, G.; Martinelli, M.; Paladino, G. Synthesis
2006, 73-76.
(21) For an example of the oxidation of â-amido esters to Z-enamides using
Dess-Martin periodinate, see: Nicolaou, K. C.; Mathison, C. J. N. Angew.
Chem., Int. Ed. 2005, 44, 5992-5997.
(22) Kish et al. also reported that the cis/trans isomerization was induced under
photochemical conditions in a solvent-dependent manner and approximated
that a 6.5:1 ratio of the trans- and cis-isomers was obtained in DMF. Suh,
E. M.; Kishi, Y. J. Am. Chem. Soc. 1994, 116, 11205-11206.
9
J. AM. CHEM. SOC. VOL. 128, NO. 39, 2006 12955