B. Sun et al. / Tetrahedron Letters 47 (2006) 7371–7374
7373
OAc
O
OAc
OAc
OBn
OH
OAc
O
OBn
O
OBn
i
AcO
O
BnO
O
O
OBn
+
R'
HN
R
AcO
BnO
BnO
O
R'
O
BnO
HN
R
OBn
O
OC(NH)CCl3
OBn
OBn
OBn
2a R = Teoc
2b R = PNZ
3a R' = OCH3
1a R = Teoc, R' = OCH3
1b R = PNZ, R' = OCH3
3b R' = OCH2CH2N3
3c R' = SPh
1c R = Teoc, R' = OCH2CH2N3
1d R = PNZ, R' = OCH2CH2N3
1e R = Teoc, R' = SPh
3d R' = OCH2(CH2)8CH=CH2
1f R = Teoc, R' = OCH2(CH2)8CH=CH2
OAc
O
OH
OAc
OH
HO
O
OBn
OH
ii, iii, iv
AcO
TeocHN
O
O
OBn
OH
HN
BnO
O
O
O
HO
O
yield over 3 steps: 73%
OCH3
OCH3
BnO
HO
O
Ac
O
OBn
OH
OBn
OH
1a
10
Scheme 3. Reagents and conditions: (i) TMSOTf/dry Et2O, ꢀ20 °C, 5 h; (ii) active Zn powder/Ac2O, room temperature, 5 h; (iii) NaOMe/MeOH,
room temperature; (iv) H2 (50 psi), Pd (10%)/C, room temperature, 6 h.
8d (84%). Compounds 8a–d were characterized by NMR
and LC–MS. Compounds 8a–d were deacetylated using
NaOMe in MeOH, followed by selective protection of
OH-40 and OH-60 with a,a-dimethoxytoluene under
mild acidic conditions in anhydrous THF. The remain-
ing OH-groups were benzylated with NaH and benzyl
bromide in DMF to give 9a–d (50%; 57%; 54%; 60%).
Selective cleavage13 of the benzaldehyde acetal in 9a–d
with NaBH3CN–HCl in dry THF afforded acceptor
compounds 3a–d in good yields (76–78%).14
program coordinated by the Dutch Ministry of
Economic Affairs.
References and notes
1. (a) Barasch, J.; Kiss, B.; Prince, A.; Saiman, L.; Gruenert,
D.; Al-Awquati, Q. Nature 1991, 352, 70; (b) Imundo, L.;
Barasch, J.; Prince, A.; Al-Awqati, Q. Proc. Natl. Acad.
Sci. U.S.A. 1995, 92, 3019; (c) Coligan, J. E.; Kindt, T. J.;
Krause, R. M. Immunochemistry 1978, 15, 755; (d)
Siddiqui, B.; Hakomori, S. J. Biol. Chem. 1971, 246,
5766.
2. (a) Bhattacharya, S. K.; Danishefsky, S. J. J. Org. Chem.
2000, 65, 144; (b) Kwon, O.; Danishefsky, S. J. J. Am.
Chem. Soc. 1998, 120, 1588; (c) Fang, J.; Chen, X.; Zhang,
W.; Wang, J.; Andreana, P. R.; Wang, P. G. J. Org. Chem.
1999, 64, 4089; (d) Paulsen, H.; Paal, M. Carbohydr. Res.
1985, 137, 39.
3. Hakomori, S. Annu. Rev. Biochem. 1981, 50, 733.
4. (a) Wessel, H. P.; Iversen, T.; Bundle, D. R. Carbohydr.
Res. 1984, 130, 5; (b) Sugimoto, M.; Horisaki, T.; Ogawa,
T. Glycoconjugate J. 1985, 11–15; (c) Paulsen, H.; Paal, M.
Carbohydr. Res. 1985, 137, 39.
5. (a) Banoub, J.; Boullanger, P.; Lafont, D. Chem. Rev.
1992, 92, 1167; (b) Barresi, F.; Hindsgaul, O. Carbohydr.
Res. 1995, 14, 1043.
Finally, glycosyl donors 2a–b were reacted with accep-
tors 3a–d at ꢀ20 °C in dry diethyl ether in the presence
of TMSOTf (0.11 equiv) to give GM2 analogues 1a–f.15
The glycosylation yields are listed in Table 1.
The results in Table 1 clearly show that the glycosylation
efficiency of glycosyl donor N-trichloroethoxycarbonyl-
galactosamine-O-trichloroacetimidate (2a) was better
than that of N-p-nitrobenzyloxycarbonyl-galactos-
amine-O-trichloroacetimidate (2b). Replacement of the
N-Teoc group in 1a by an N-acetyl group with active
Zn powder in acetic anhydride7 followed by deacetyl-
ation with NaOMe in MeOH and debenzylation with
H2 (50 psi) and Pd/C (10%) in MeOH at room temper-
ature gave b-D-GalNAc-(1 ! 4)-b-D-Gal-(1 ! 4)-b-D-
Glc-OMe (methyl asialo GM2, 10)16 in 73% yield (three
steps), see Scheme 3.
6. (a) Qian, X.; Hindsgaul, O. Chem. Commun. 1997, 1059;
(b) Liao, W.; Piskorz, C. F.; Locke, R. D.; Matta, K. L.
Bioorg. Med. Chem. Lett. 2000, 10, 793.
7. (a) Dullenkopf, W.; Castro-Palomino, J. C.; Manzoni, L.;
Schmidt, R. R. Carbohydr. Res. 1996, 296, 135; (b)
Higashi, K.; Susaki, H. Chem. Pharm. Bull. 1992, 40, 2019.
8. Lindhorst, T. K. Essentials of Carbohydrate Chemistry and
Biochemistry, 2nd ed.; Wiley-VCH, 2003; p 86.
In conclusion, we have prepared and investigated
two glycosyl donors 2a and 2b, which could be linked
efficiently to lactose acceptors 3a–d, and showed unam-
biguously that N-trichloroethoxycarbonyl-galactos-
amine-O-trichloroacetimidate was an efficient donor
with glycosylation yields of 90% or more.
9. Compound 2a. 1H NMR (300 MHz, CDCl3), all couplings
in Hz. d (ppm): 8.74 (s, 1H, C@NH), 6.40 (d, 1H, J = 3.6,
H-1), 5.46 (d, 1H, J = 2.6, H-4), 5.22 (dd, 1H, J1 = 3.2,
J2 = 11.4, H-3), 5.01 (d, 1H, J = 9, NHTeoc), 4.70 and
4.64 (ABq, J = 9.5, 1H each, Cl3CCH2OCO), 4.46–4.47
(m, 1H, H-2), 4.01–4.32 (m, 3H, H-5, H-6), 2.11 (s, 3H,
COCH3), 1.96 (s, 6H, 2 COCH3). HRMS [C17H2035Cl5-
37Cl1N2O10+Na]+ 646.91582 (calcd 646.91173, D ppm =
6.33).
Acknowledgements
The authors thank Peter van Galen (Radboud Univer-
sity, Nijmegen) for HRMS measurements. This work
was supported by the Human Frontier Science Program
(HFSP) and by NanoNed, a national nanotechnology
10. Paulsen, H.; Bunsch, A. Carbohydr. Res. 1982, 101, 21.
¨
11. Hudson, C. S.; Johnson, J. M. J. Am. Chem. Soc. 1915, 37,
1270.