the uronic acid component is either D-glucuronic or
L-iduronic acid, which differ only in their C5-configura-
tion. Various biological studies indicate that sequences
containing domains of L-iduronic components modulate
effects on a number of FGFs. Synthetic access to disac-
charide components of such oligosaccharides is thus of
considerable interest, as they are key precursors to the
synthesis of longer H/HS-like sequences.
Of the uronic acid components, L-iduronic acid provides
a key challenge to effective synthesis, as this sugar is not
readily available. Thus, efficient synthesis of L-iduronic acid
derivatives is critical to provision of structurally defined
saccharides for evaluation, and scalability is important for
any future therapeutic potential.
A number of previous syntheses of L-iduronic acid and
derivatives have been described,4 involving obtention of the
C5 L-configuration by diastereomer separation4a-c or inver-
sion of the C5 stereochemistry of D-sugar precursors,4d-i in
some cases with subsequent oxidation of intermediate L-idose
derivatives.4j-l Low temperature addition of tris(phenylthi-
o)methyllithium (a carboxylate surrogate)5 to 2 has also
provided stereoselective introduction of the C5 stereocenter.6
Oxidation of L-iditose components in oligosaccharides has
also been employed.7
tivity in most cases, though its utility has been applied to
synthesis of isotopically labeled sugars.8b
The diastereoselectivity of the cyanohydrin reaction of 2
has previously been reported to be poor (typically a 1:1
mixture).9 While addition of appropriate dialkylhydrazone
reagents has provided a stereoselective entry to the D-gluco
cyanohydrin (4), in two steps from 2,10 there is no prior
stereoselective access to 3. We thus undertook an reinves-
tigation of the conditions for this cyanohydrin reaction of
aldehyde 2, with a view to developing a more diastereose-
lective and scalable process.
Scheme 1. Stereocontrolled Cyanohydrin Synthesis
We report here our approach to stereocontrolled introduc-
tion of the key C5 L-ido strereochemistry, through reaction
at ambient temperature, under air and without the need for
anhydrous conditions, using inexpensive reagents. The key
stereochemical step involves purification by crystallization
and is thus designed to enable large-scale synthesis, facilitat-
ing access to larger amounts of various L-iduronate targets.
Scalability underpins the potential for viable development
of L-ido-containing heparan-related saccharides for clinical
evaluations.
We found the cyanohydrin reaction to be fast (complete
in <30 min) with or without additives, but that diastereo-
control, as previously reported,9 is very low at short reaction
times. However, following the reaction over longer periods
showed that, in reactions with added magnesium chloride,
the de increases11 and after 5 days affords 90% de in favor
of the L-ido configuration (Scheme 1 and Table 1a). During
this reaction increasing precipitation was observed. This
outcome is rationalized as a combination of cyanohydrin
epimer equilibration (slightly basic reaction conditions) and
the preferential crystallization of the L-ido configuration
diastereomer 3 from the reaction solution,12 driving equi-
librium toward the L-ido product. Pure 3 is then isolated in
high yields after recrystallization.
The cyanohydrin reaction has been used in carbohydrate
homologation chemistry8 (originally reported by Kiliani8a)
and, while high yielding, proceeds with low diastereoselec-
(3) Cole, C.; Jayson, G. C. Expert Opin. Biol. Ther. 2008, 8, 351–362.
(4) (a) Rochepeau-Jobron, L; Jacquinet, J.-C. Carbohydr. Res. 1997,
303, 395–406. (b) Hinou, H.; Kuorsawa, H.; Matsuoka, K.; Terunuma, D.;
Kuzuhara, H. Tetrahedron Lett. 1999, 40, 1501–1504. (c) Schell, P.;
Orgueira, H. A.; Roehrig, S.; Seeberger, P. H. Tetrahedron Lett. 2001, 42,
3811–3814. (d) Orgueira, H. A.; Bartolozzi, A.; Schell, P.; Litjens,
R. E. J. N.; Palmacci, E. R.; Seeberger, P. H. Chem.sEur. J. 2003, 9, 140–
169. (e) Ke, W.; Whitfield, D. M.; Gill, M.; Larocque, S.; Yu, S. H.
Tetrahedron Lett. 2003, 44, 7767–7770. (f) Ojeda, R.; de Paz, J. L.; Mart´ın-
Lomas, M.; Lassaletta, J. M. Synlett 1999, 1316–1318. (g) Jacquinet, J-C;
Petitoi, M; Duchaussoy, P.; Lederman, I.; Choay, J.; Torri, G.; Sinay, P.
Carbohydr. Res. 1984, 130, 221–241. (h) Yu, H. N.; Furukawa, J.-i.; Ikeda,
T.; Wong, C. H. Orglett 2004, 6, 723–726. Via C6 bromo: (i) Blanc-
Muesser, M.; Defaye, J.; Horton, D.; Tsai, J.-H. Methods Carbohydr. Chem.
1980, 8, 177–183. (j) Tatai, J.; Osztrovszky, G.; Kajta´r-Peredy, M.; Fu¨gedi,
P. Carbohydr. Res. 2007, 343, 596–606. (k) Codee, J. D. C.; Stubba, B.;
Schiattarella, M.; Overkleeft, H. S.; van Boeckel, C. A.; van Boom, J. H.;
van der Marel, G. A. J. Am. Chem. Soc. 2005, 127, 3767–3773. (l) Davis,
N. J.; Flitsch, S. L. Tetrahedron Lett. 1993, 34, 1181–1184.
Analysis of the effect of substrate concentration on the
diastereoselectivity (using 1.1 equiv of MgCl2 and KCN, 16 h
time point, where optimum de ) 82%), illustrates that the
de is also related to a critical concentration limit, below
which the de drops markedly (Table 1b).
(9) (a) Wolfrom, M. L.; Thomas, G. H. S. Methods Carbohydr.
Chem. 1963, 2, 32–4. (b) Shafizadeh, F.; Wolfrom, M. L. J. Am. Chem.
Soc. 1955, 77, 2568–2569. (c) Hudson, C. S. J. Am. Chem. Soc. 1951, 73,
4498–4499. Idogluco system gave 1:1 ratio under all conditions: (d) Rauter,
A.; Figueiredo, J.; Ismael, I.; Pais, M. J. Carbohydr. Chem. 1987, 6, 259–
272.
(5) Seebach, D. Angew. Chem., Int. Ed. Engl. 1967, 6, 442–443.
(6) (a) Lohman, G. J. S.; Hunt, D. K.; Hogermeier, J. A; Seeberger, P.
J. Org. Chem. 2003, 68, 7559–7561. (b) Gavard, O.; Hersant, Y. I.; Alais,
J.; Duverger, V.; Dilhas, A.; Bascou, A.; Bonnaffe´, D. Eur. J. Org. Chem.
2003, 3603–3620. (c) Lubineau, A.; Gavard, O.; Alais, J.; Bonnaffe´, D.
Tetrahedron Lett. 2000, 41, 307–311.
(10) (a) Ferna´ndez, R.; Mart´ın-Zamora, E.; Pareja, C.; Lassaletta, J. M.
J. Org. Chem. 2001, 66, 5201–5207. (b) Ferna´ndez, R.; Mart´ın-Zamora,
E.; Pareja, C.; Lassaletta, J. M. Tetrahedron Lett. 1996, 375787-
5790.
(7) Polat, T.; Wong, C.-H. J. Am. Chem. Soc. 2007, 127, 12795–12800.
(8) (a) Kiliani, H. Ber. 1887, 20, 339. (b) Synder, J. R.; Serianni, A. S.
Carbohydr. Res. 1987, 163, 169–188. (c) Synder, J. R.; Serianni, A. S. J.
Org. Chem. 1986, 51, 2694–2702.
(11) A graphical representation is available in the Supporting Informa-
tion.
(12) Solubilities in 1:1 MeOH/H2O: 3, 0.9 mg/mL, and 4, 1.9 mg/
mL.
Org. Lett., Vol. 11, No. 20, 2009
4529