P. A. Gale et al.
NH), 10.28 (s, 2H; NH), 8.33 (t, J=1.8 Hz, 2H; ArH), 8.21 (dd, J=8.0,
1.8 Hz, 2H; ArH), 8.07 (m, 2H; ArH), 7.78 (m, 4H; ArH), 7.72 (m, 3H;
ArH), 7.54(t, J=7.7 Hz, 2H; ArH), 7.36 (m, 4H; ArH), 7.10 ppm (m,
2H; ArH); 13C{1H} NMR (75 MHz, [D6]DMSO): d=165.5 (CO), 165.1
(CO), 139.2 (C), 139.1 (C), 135.7 (C), 134.9 (C), 130.8 (CH), 128.7 (CH),
128.6 (CH), 127.1 (CH), 123.7 (CH), 123.3 (CH), 122.7 (CH), 120.4
(CH), 120.0 ppm (CH); IR (film): n˜ =3288, 3061, 1689, 1645, 1534, 1451,
1326, 1253 cmÀ1; LRMS (ES+): 555.0 [M+H]+; elemental analysis calcd
(%) for C34H26N4O4: C 73.19, H 4.65, N 10.35; found: C 73.24, H 4.68, N
9.97.
SADABS.[17] The structures were solved by direct methods[18] and refined
by full-matrix least-squares methods on F2. Non-hydrogen atoms were re-
fined anisotropically and hydrogen atoms were treated using a riding
model.
Crystal data for 6(TBAbenzoate)
: C80H108N6O8, Mr =1281.72, T=
2
120(2) K, monoclinic, space group P21/n, a=8.5260(2), b=20.8328(11),
c=41.390(2) , b=94.690(3)8, V=7327.1(6) 3, 1calcd =1.162 gcmÀ3, m=
0.075 mmÀ1, Z=4, reflections collected: 41713, independent reflections:
13190 (Rint =0.0973), final
0.2018, R indices (all data): R1=0.1767. wR2=0.2511.
Crystal data for (TBACl) 3·H2O: C82H136N7O5Cl3, Mr =1406.33, T=
120(2) K, orthorhombic, space group P212121, a=8.2548(3), b=
20.2938(9), c=48.724(2) , V=8162.3(6) 3, 1calcd =1.144 gcmÀ3
m=
0.165 mmÀ1, Z=4, reflections collected: 42045, independent reflections:
16936 (Rint =0.1239), final indices [I>2s(I)]: R1=0.0956, wR2=
R indices [I>2s(I)]: R1=0.0845, wR2=
1,3-Bis-(2-(3-nitro)benzanilidephenyl)urea (7): A solution of 3-nitroben-
zoic acid (3.13 g, 18.73 mmol), triethylamine (2.81 mL, 20.60 mmol),
PyBOP (9.75 g, 18.73 mmol) was placed in an oven-dried 100 mL three-
necked round-bottomed flask. HOBt (0.01 g) in anhydrous dimethylfor-
mamide (40 mL) with 1,3-bis-(2-aminophenyl)urea[8] (2.27 g, 9.37 mmol)
was slowly added. Following the addition the reaction was left stirring at
ambient temperature for 72 h, after which the solvent was removed using
reduced pressure distillation to produce a brown solid residue. The resi-
due was resuspended in methanol (50 mL) and filtered to afford a white
solid 7 (3.70 g, 6.84mmol, 73%) that was further washed with diethyl
ether. M.p.=2178C; 1H NMR (300 MHz, [D6]DMSO): d=10.37 (s, 2H;
NH), 8.78 (s, 2H; NH), 8.52 (s, 2H; NH), 8.39 (m, 4H; ArH), 7.84 (dd,
J=8.3, 1.5 Hz, 4H; ArH), 7.75 (t, J=7.9 Hz, 2H; ArH), 7.40 (dd, J=7.5,
1.1 Hz, 2H; ArH), 7.25 (m, 2H; ArH), 7.10 ppm (m, 2H; ArH);
13C{1H} NMR (75 MHz, [D6]DMSO): d=163.6 (CO), 153.3 (CO), 147.7
(C), 135.7 (C), 134.1 (CH), 130.0 (CH), 128.1 (C), 127.1 (CH), 126.5
(CH), 126.1 (CH), 123.1 (CH), 122.6 (CH), 122.4ppm (CH); IR (film):
n˜ =3260, 1651, 1592, 1530, 1483, 1451, 1303, 1254, 751 cmÀ1; LRMS
(ESÀ): m/z: 653.1 [M+TFAÀH]À, 1193.7 [2M+TFAÀH]À, 1733.4
[3M+TFAÀH]À; elemental analysis calcd (%) for C27H20N5O7: C 60.00,
H 3.73, N 15.54; found: C 59.70, H 3.83, N 15.60.
6
ACHTREUNG
,
R
0.1666, R indices (all data): R1=0.2121. wR2=0.2149.
CCDC-609225 and CCDC-609227 contain the supplementary crystallo-
graphic data for this paper. These data can be obtained free of charge
ac.uk/data_request/cif.
Acknowledgements
P.A.G. would like to thank the EPSRC for a DTA studentship (S.J.B.)
and for access to the crystallographic facilities at the University of South-
ampton. S.E.G.-G. would like to thank the Ministerio de Educacion y
Ciencia of Spain for the award of a Postdoctoral grant.
[1] a) R. A. Pascal, J. Spergel, D. van Engen, Tetrahedron Lett. 1986, 27,
4099–4102; b) S. Valiyaveettil, J. F. J. Engbersen, W. Verboom, D. N.
Reinhoudt, Angew. Chem. 1993, 105, 942–944; Angew. Chem. Int.
Ed. Engl. 1993, 32, 900–901; c) B. R. Cameron, S. J. Loeb, Chem.
Commun. 1997, 573–574; d) K. Kavallieratos, S. R. de Gala, D. J.
Austin, R. H. Crabtree, J. Am. Chem. Soc. 1997, 119, 2325–2326;
e) R. Prohens, S. Tomàs, J. Morey, P. M. Deyà, P. Ballester, A.
Costa, Tetrahedron Lett. 1998, 39, 1063–1066; f) P. D. Beer, Acc.
Chem. Res. 1998, 31, 71–80; g) K. Choi, A. D. Hamilton, J. Am.
Chem. Soc. 2001, 123, 2456–2457; h) T. S. Snowden, A. P. Bisson,
E. V. Anslyn, J. Am. Chem. Soc. 1999, 121, 6324–6325; i) S. Kubik,
R. Kirchner, D. Nolting, J. Seidel, J. Am. Chem. Soc. 2002, 124,
12752–12760; j) S. J. Coles, J. G. Frey, P. A. Gale, M. B. Hursthouse,
M. E. Light, K. Navakhun, G. L. Thomas, Chem. Commun. 2003,
568–569; k) S. J. Brooks, L. S. Evans, P. A. Gale, M. B. Hursthouse,
M. E. Light, Chem. Commun. 2005, 734–736; l) S. J. Brooks, P. R.
Birkin, P. A. Gale, Electrochem. Commun. 2005, 7, 1351–1356;
m) K. Bowman-James, Acc. Chem. Res. 2005, 38, 671–678; n) P. D.
Beer, M. R. Sambrook, D. Curiel, Chem. Commun. 2006, 2105–
2117; o) S. O. Kang, D. Powell, V. W. Day, K. Bowman-James,
Angew. Chem. 2006, 118, 1955–1959; Angew. Chem. Int. Ed. 2006,
45, 1921–1925.
[2] a) P. J. Smith, M. V. Reddington, C. S. Wilcox, Tetrahedron Lett.
1992, 33, 6085–6088; b) J. Scheerder, J. F. J. Engbersen, A. Casnati,
R. Ungaro, D. N. Reinhoudt, J. Org. Chem. 1995, 60, 6448–6454;
c) M. S. Goodman, V. Jubian, A. D. Hamilton, Tetrahedron Lett.
1995, 36, 2551–2554; d) S. Nishizawa, P. Bühlmann, M. Iwao, Y.
Umezawa, Tetrahedron Lett. 1995, 36, 6483–6486; e) M. P. Hughes,
B. D. Smith, J. Org. Chem. 1997, 62, 4492–4499; f) S. I. Saskai, M.
Mizuno, K. Naemura, Y. Tobe, J. Org. Chem. 2000, 65, 275–283;
g) K. H. Lee, J.-I. Hong, Tetrahedron Lett. 2000, 41, 6083–6087;
h) A. M. M. G. Snellink-Rul, J. F. J. Engbersen, P. Timmerman,
D. N. Reinhoudt, Eur. J. Org. Chem. 2000, 165–170; i) D. Esteban-
Gomez, L. Fabbrizzi, M. Liechelli, J. Org. Chem. 2005, 70, 5717–
5720; j) T. Gunnlaugsson, P. E. Kruger, P. Jensen, J. Tierney, H. D. P.
Ali, G. M. Hussey, J. Org. Chem. 2005, 70, 10875–10878; k) T.
Gunnlaugsson, A. P. Davis, J. E. OꢁBrien, M. Glynn, Org. Biomol.
Chem. 2005, 3, 48–56; l) B. P. Hay, T. K. Firman, B. A. Moyer, J.
1,3-Bis-(2-(3-amino)benzanilidephenyl)urea (8): A suspension of 1,3-bis-
(2-(3-nitro)benzanilidephenyl)urea (0.50 g, 0.93 mmol) in ethanol
(150 mL) was place in an oven-dried three-necked round-bottomed flask
and the suspension was stirred. Pd/C 10% (0.01 g, cat.) and hydrazine
monohydrate (0.50 mL) were added dropwise to this suspension. The re-
action was then heated to reflux and left stirring for 16 h, after which the
reduced product was removed by filtration. The product was dissolved in
dimethylformamide and filtered to remove Pd/C, after which the solvent
was removed by reduced pressure distillation, resuspended in dichloro-
methane and washed with water to remove remaining dimethylforma-
mide. The white precipitated product 8 was removed by filtration (0.40 g,
0.83 mmol, 89%). M.p.=2378C; 1H NMR (300 MHz, [D6]DMSO): d=
9.79 (s, 2H; amide NH), 8.62 (s, 2H; urea NH), 7.65 (dd, J=7.9, 1.5 Hz,
2H; ArH), 7.49 (dd, J=7.5, 1.5 Hz, 2H; ArH), 7.22–7.09 (m, 10H; ArH),
6.75 (m, 2H; ArH), 5.27 ppm (s, 4H; NH2); 13C{1H} NMR (75 MHz,
[D6]DMSO): d=166.1 (CO), 153.9 (CO), 148.8 (C), 135.1 (C), 132.9 (C),
129.7 (C), 128.8 (CH), 126.4(CH), 125.7 (CH), 123.5 (CH), 123.1 (CH),
116.9 (CH), 114.5 (CH), 113.2 ppm (CH); IR (film): n˜ =3312, 3285, 1641,
1509, 1441, 1308, 1293, 1275, 1233 cmÀ1; LRMS (ESÀ): 515.2 [M+Cl]À,
542.1 [M+2MeOHÀH]À, 559.1 [M+Br]À, 593.3 [M+TFAÀH]À, 995.4
[2M+Cl]À, 1041.4 [2M+Br]À, 1073.6 [2M+TFAÀH]À; elemental analysis
calcd (%) for C27H24N5O3·0.25CH3OH: C 67.00, H 5.16, N 17.20; found:
C 66.80, H 5.11, N 17.06.
1H NMR spectroscopic titrations: A Bruker AV300 NMR spectrometer
1
was used to measure the H NMR shifts of the NH protons of the recep-
tors. Solutions of 1–6 and 10 were titrated with ꢀ10 mm anion salt in a
ꢀ1 mm solution of the compounds in [D6]DMSO/0.5% water or
[D6]DMSO/5% water at 258C. The titration data was plotted Dppm
versus concentration of guest and fitted to a binding model using the
EQNMR computer program.[10]
X-ray structure determinations: Cell dimensions and intensity data were
recorded at 120 K, using a Bruker Nonius KappaCCD area detector dif-
fractometer mounted at the window of a rotating Mo anode (l(MoKa)=
G
0.71073 ). The crystal-to-detector distance was 30 mm and f and W
scans were carried out to fill the asymmetric unit. Data collection and
processing were carried out using the programs COLLECT,[15] and
DENZO[16] and an empirical absorption correction was applied using
3328
ꢀ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Chem. Eur. J. 2007, 13, 3320 – 3329