Communications
Frohning, C. W. Kohlpainter, H. W. Bohnen in Applied Homo-
temperatures and provides mixtures of linear and branched
coupling products: a) P. Isnard, B. Denise, R. P. A. Sneeden,
J. M. Cognion, P. Durual, J. Organomet. Chem. 1982, 240, 285 –
288; b) P. Isnard, B. Denise, R. P. A. Sneeden, J. M. Cognion, P.
Durual, J. Organomet. Chem. 1983, 256, 135 – 139; c) T. Kondo,
Y. Tsuji, Y. Watanabe, Tetrahedron Lett. 1987, 28, 6229 – 6230;
d) T. Kondo, M. Akazome, Y. Tsuji, Y. Watanabe, J. Org. Chem.
1990, 55, 1286 – 1291; e) T. Kondo, N. Hiraishi, Y. Morisaki, K.
Wada, Y. Watanabe, T.-A. Mitsudo, Organometallics 1998, 17,
2131.
geneous Catalysis with Organometallic Compounds, Vol. 1 (Eds.:
B. Cornils, W. A. Herrmann), Wiley-VCH, Weinheim, 2002,
pp. 31 – 103; d) B. Breit, Acc. Chem. Res. 2003, 36, 264 – 275.
À
[2] For hydrogen-mediated C C bond formations developed in our
laboratory, see: a) H.-Y. Jang, R. R. Huddleston, M. J. Krische, J.
Am. Chem. Soc. 2002, 124, 15156 – 15157; b) R. R. Huddleston,
M. J. Krische, Org. Lett. 2003, 5, 1143 – 1146; c) H.-Y. Jang, R. R.
Huddleston, M. J. Krische, Angew. Chem. 2003, 115, 4208 – 4211;
Angew. Chem. Int. Ed. 2003, 42, 4074 – 4077; d) R. R. Huddles-
ton, H.-Y. Jang, M. J. Krische, J. Am. Chem. Soc. 2003, 125,
11488 – 11489; e) P. K. Koech, M. J. Krische, Org. Lett. 2004, 6,
691 – 694; f) G. A. Marriner, S. A. Garner, H.-Y. Jang, M. J.
Krische, J. Org. Chem. 2004, 69, 1380 – 1382; g) H.-Y. Jang, R. R.
Huddleston, M. J. Krische, J. Am. Chem. Soc. 2004, 126, 4664 –
4668; h) H.-Y. Jang, M. J. Krische, J. Am. Chem. Soc. 2004, 126,
7875 – 7880; i) H.-Y. Jang, F. W. Hughes, H. Gong, J. Zhang, J. S.
Brodbelt, M. Krische, J. Am. Chem. Soc. 2005, 127, 6174 – 6175;
j) J.-R. Kong, C.-W. Cho, M. J. Krische, J. Am. Chem. Soc. 2005,
127, 11269 – 11276; k) C.-K. Jung, S. A. Garner, M. J. Krische,
Org. Lett. 2006, 8, 519 – 522; l) J.-R. Kong, M.-Y. Ngai, M. J.
Krische, J. Am. Chem. Soc. 2006, 128, 718 – 719; m) C.-W. Cho,
M. J. Krische, Org. Lett. 2006, 8, 891 – 894.
[7] Intermolecular cobalt-catalyzed hydroacylation has been de-
scribed, but is restricted to the use of vinyl silanes as coupling
partners: a) C. P. Lenges, M. Brookhart, J. Am. Chem. Soc. 1997,
119, 3165 – 3166; b) C. P. Lenges, P. S. White, M. Brookhart, J.
Am. Chem. Soc. 1998, 120, 6965 – 6979.
[8] An advantageous effect of triphenylarsine (Ph3As) has been
noted in Stille coupling reactions: a) V. Farina, B. Krishnan, J.
Am. Chem. Soc. 1991, 113, 9585 – 9895; b) V. Farina, Pure Appl.
Chem. 1996, 68, 73 – 78.
[9] For rhodium-catalyzed decarbonylation of aldehydes, see:
a) J. M. OꢀConner, J. Ma, J. Org. Chem. 1992, 57, 5075 – 5077;
b) C. M. Beck, S. E. Rathmill, Y. J. Park, J. Chen, R. H. Crabtree,
Organometallics 1999, 18, 5311 – 5317.
[10] For catalytic reductive cyclization of olefinic carbonyl com-
pounds, see a) N. M. Kablaoui, S. L. Buchwald, J. Am. Chem.
Soc. 1995, 117, 6785 – 6786; b) W. E. Crowe, M. J. Rachita, J. Am.
Chem. Soc. 1995, 117, 6787 – 6788; c) N. M. Kablaoui, S. L.
Buchwald, J. Am. Chem. Soc. 1996, 118, 3182 – 3191.
[11] a) J. Schwartz, J. B. Cannon, J. Am. Chem. Soc. 1974, 96, 4721 –
4723; b) Y. Obora, Y. Tsuji, T. Kawamura, J. Am. Chem. Soc.
1993, 115, 10414 – 10415.
À
[3] Prior to our work, only two hydrogen-mediated C C bond
formations under CO-free conditions were reported: a) G. A.
Molander, J. O. Hoberg, J. Am. Chem. Soc. 1992, 114, 3123 –
3125; b) K. Kokubo, M. Miura, M. Nomura, Organometallics
1995, 14, 4521 – 4524. In the latter study, yields of the styrene–
Bz2O coupling product were not obtained, and under the
optimum reported conditions, a 66% conversion was deter-
mined by GC analysis. In our hands, under their optimum
reported conditions, a 30% yield of the styrene–Bz2O coupling
product was reproducibility obtained as a 3:1 ratio of branched
and linear isomers.
[12] X. Cui, K. Burgess, Chem. Rev. 2005, 105, 3272 – 3296, and
references therein.
[13] Under the optimum conditions described in Table 1, 4-phenyl-1-
butene couples to benzoic acid in 34% yield with a 1:2.5 ratio of
the branched to linear regioisomers, respectively, and acetic
anhydride couples to styrene in 27% yield with a 9:1 ratio of
branched to linear regioisomers, respectively.
[4] For reviews encompassing rhodium-catalyzed hydroacylation
involving aldehyde donors, see: a) B. Bosnich, Acc. Chem. Res.
1998, 31, 667 – 674; b) M. Tanaka, K. Sakai, H. Suemune, Curr.
Org. Chem. 2003, 7, 353 – 367; c) G. C. Fu in Modern Rhodium-
Catalyzed Organic Reactions (Ed.: P. A. Evans), Wiley-VCH,
Weinheim, 2005, chap. 7, pp. 79 – 91.
[14] J. A. Miller, J. A. Nelson, Organometallics 1991, 10, 2958 – 2961,
and references therein.
[5] To suppress decarbonylation in the intermolecular rhodium-
catalyzed hydroacylation, aldehyde donors that possess an
adjacent site of coordination are required (for example, salicy-
ladehydes and b-sulfido aldehydes). Alternatively, conventional
aldehyde donors may be converted into the corresponding (N-2-
pyridyl)aldimines, which are then used as aldehyde equivalents:
a) K. P. Vora, C. F. Lochow, R. G. Miller, J. Organomet. Chem.
1980, 192, 257 – 264; b) E. Rode, M. E. Davis, B. E. Hanson, J.
Chem. Soc. Chem. Commun. 1985, 716 – 717; c) T. B. Marder,
D. C. Roe, D. Milstein, Organometallics 1988, 7, 1451 – 1453;
d) C.-H. Jun, H. Lee, J.-B. Hong, J. Org. Chem. 1997, 62, 1200 –
1201; e) C.-H. Jun, D.-Y. Lee, H. Lee, J.-B. Hong, Angew. Chem.
2000, 112, 3214 – 3216; Angew. Chem. Int. Ed. 2000, 39, 3070 –
3072; f) C.-H. Jun, J.-W. Chung, D.-Y. Lee, A. Loupy, S. Chatti,
Tetrahedron Lett. 2001, 42, 4803 – 4805; g) M. C. Willis, S.
Sapmaz, Chem. Commun. 2001, 2558 – 2559; h) M. Tanaka, M.
Imai, Y. Yamamoto, K. Tanaka, M. Shimowatari, S. Nagumo, N.
Kawahara, H. Suemune, Org. Lett. 2003, 5, 1365 – 1367; i) M.
Imai, M. Tanaka, K. Tanaka, Y. Yamamoto, N. Imai-Ogata, M.
Shimowatari, S. Nagumo, N. Kawahara, H. Suemune, J. Org.
Chem. 2004, 69, 1144 – 1150; j) M. C. Willis, S. J. McNally, P. J.
Beswick, Angew. Chem. 2004, 116, 344 – 347; Angew. Chem. Int.
Ed. 2004, 43, 340 – 343; k) K. Tanaka, M. Tanaka, H. Suemune,
Tetrahedron Lett. 2005, 46, 6053; l) M. C. Willis, H. E. Randell-
Sly, R. L. Woodward, G. S. Currie, Org. Lett. 2005, 7, 2249 – 2251.
[6] Intermolecular ruthenium-catalyzed hydroacylation has been
described, but generally requires exceptionally high reaction
ꢀ 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2006, 45, 6885 –6888