Inorg. Chem. 2006, 45, 10049−10051
Synthesis, Structural Characterization, and Properties of Aluminum (III)
meso-Tetraphenylporphyrin Complexes Axially Bonded to Phosphinate
Anions
Se´bastien Richeter,*,† Julien Thion,† Arie van der Lee,‡ and Dominique Leclercq†
Laboratoire de Chimie Mole´culaire et Organisation du Solide, UMR 5637, UniVersite´ Montpellier
II, CC 007, Place Euge`ne Bataillon, 34095 Montpellier Cedex 05, France, and Institut Europe´en
des Membranes, UMR 5635, UniVersite´ Montpellier II, CC 047, Place Euge`ne Bataillon,
34095 Montpellier Cedex 05, France
Received September 20, 2006
Aluminum (III) meso-tetraphenylporphyrins axially bonded to
phosphinate anions have been synthesized and characterized by
NMR and UV−visible spectroscopy, single-crystal X-ray diffraction,
and FAB+ mass spectrometry. According to the solvent and the
size of the anion, these compounds are able to self-assemble in
two different manners.
Figure 1. Synthesis of complexes 1 and 2.
catalytic properties and their rich photo- and electrochem-
istry,6 their use as molecular building blocks for the design
of porphyrin arrays remains limited. The synthesis of por-
phyrin arrays including aluminum(III) porphyrins is mostly
limited to the use of phenolates7 and carboxylates8 as the
axial ligand. Surprisingly, there is no example of alumi-
num(III) porphyrins axially bonded to phosphinate anions.
Here we report the synthesis of aluminum(III) meso-
tetraphenylporphyrin (AlIIITPP) complexes axially bonded
to phosphinate anions and present their properties as su-
pramolecular building blocks. Complexes 1 and 2 were
obtained by a “one-pot” strategy using the meso-tetraphen-
ylporphyrin free base (H2TPP) as starting material (Fig-
ure 1). H2TPP was treated with AlMe3, and the phosphinic
acid derivative was added to the reactive intermediate
A self-assembly process can be described as a spontaneous
association of molecules under equilibrium into stable
aggregates held together by noncoValent bonds.1 Such
phenomena are frequent in biological systems, and an
outstanding example is provided by bacteriochlorophyll
molecules.2 Metalloporphyrins are attractive compounds for
the design of self-assembling chromophores.3 The axial
coordination on the metal center is a powerful synthetic way
to synthesize large multiporphyrinic systems.4 Actually, much
attention have been paid to porphyrin containing zinc(II),
magnesium(II), tin(IV), or rhodium(III) as metal centers.5
Although aluminum(III) porphyrins are well known for their
* To whom correspondence should be addressed. E-mail: sricheter@
univ-montp2.fr.
† Laboratoire de Chimie Mole´culaire et Organisation du Solide.
(4) (a) Michelsen, U.; Hunter, C. A. Angew. Chem., Int. Ed. 2000, 39,
764-767. (b) Haycock, R. A.; Hunter, C. A.; James, D. A.; Michelsen,
U.; Sutton, L. R. Org. Lett. 2000, 2, 2435-2438. (c) Tsuda, A.;
Nakamura, T.; Sakamoto, S.; Yamaguchi, K.; Osuka, A. Angew.
Chem., Int. Ed. 2002, 41, 2817-2821. (d) Twyman, L. J.; King, A.
S. H. Chem. Commun. 2002, 910-911. (e) Furutsu, D.; Satake, A.;
Kobuke, Y. Inorg. Chem. 2005, 44, 4460-4462. (f) Takahashi, R.;
Kobuke, Y. J. Org. Chem. 2005, 70, 2745-2753.
‡ Institut Europe´en des Membranes.
(1) Lehn, J.-M. Supramolecular Chemistry, Concepts and PerspectiVes;
VCH: Weinheim, 1995.
(2) (a) Bystrova, M. I.; Mal’gosheva, I. N.; Krasnovskii, A. A. Mol. Biol.
1979, 13, 582-594. (b) Balaban, T. S.; Holzwarth, A. R.; Schaffner,
K.; Boender, G.-J.; de Groot, J. J. M. Biochemistry 1995, 34, 15259-
15266.
(3) (a) For examples, see: Chambron, J.-C.; Heitz, V.; Sauvage, J. -P. In
The Porphyrin Handbook; Kadish, K. M., Smith, K. M., Guillard, R.,
Eds.; Academic Press: Orlando, 2000; Vol. 6, Chapter 40, pp 1-42.
(b) Goldberg, I. Cryst. Eng. Comm. 2002, 4, 109-116. (c) Drain, C.
M.; Russell, K. C.; Lehn, J. -M. Chem. Commun. 1996, 337-338. (d)
Drain, C. M.; Nifiatis, F.; Vasenko, A.; Batteas, J. D. Angew. Chem.,
Int. Ed. 1998, 37, 2344-2347. (e) Wang, Z.; Medforth, C. J.; Shelnutt,
J. A. J. Am. Chem. Soc. 2001, 126, 15954-15955. (f) Balaban, T. S.;
Goddard, R.; Linke-Schaetzel, M.; Lehn, J.-M. J. Am. Chem. Soc.
2003, 125, 4233-4239. (g) Balaban, T. S.; Bhise, A. D.; Fischer, M.;
Linke-Schaetzel, M.; Roussel, C.; Vanthuyne, N. Angew. Chem., Int.
Ed. 2003, 42, 2140-2144. (h) Balaban, T. S.; Linke-Schaetzel, M.;
Bhise, A.D.; Vanthuyne, N.; Roussel, C. Eur. J. Org. Chem. 2004,
3919-3930.
(5) (a) For examples, see: Sanders, J. K. M.; Bampos, N.; Clyde-Watson,
Z.; Darling, S. L.; Hawley, J. C.; Kim, H. -J.; Mak, C. C.; Webb, S.
J. In The Porphyrin Handbook; Kadish, K. M., Smith, K. M., Guillard,
R., Eds.; Academic Press: New York, 2000; Vol. 3, pp 1-48. (b)
Stulz, E.; Scott, S. M.; Ng, Y.-F.; Bond, A. D.; Teat, S. J.; Darling,
S. L.; Feeder, N.; Sanders, J. K. M. Inorg. Chem. 2003, 42, 6564-
6574.
(6) (a) Sugimoto, H.; Kimura, T.; Inoue, S. J. Am. Chem. Soc. 1999, 121,
2325-2326. (b) Konishi, K.; Aida, T.; Inoue, S. J. Org. Chem. 1990,
55, 816-820. (c) Hirai, Y.; Aida, T.; Inoue, S. J. Am. Chem. Soc.
1989, 111, 3062-3063.
(7) Kumar, P. P.; Maiya, B. G. New J. Chem. 2003, 27, 619-625.
(8) Davidson, G. J. E.; Tong, L. H.; Raithby, P. R.; Sanders, J. K. M.
Chem. Commun. 2006, 3087-3089.
10.1021/ic0617801 CCC: $33.50
Published on Web 11/09/2006
© 2006 American Chemical Society
Inorganic Chemistry, Vol. 45, No. 25, 2006 10049