A R T I C L E S
Sibi et al.
Scheme 1. Synthesis of Pyrazolidinone Dienophiles
Figure 1. Rationale for increased enantioselectivity with pyrazolidinone
substrates.
diastereoselection).5 We thought that if the pyrazolidinone R
group were to act in a consonant fashion with a chiral Lewis
acid, it could provide similar amplification of enantioselectivity.
However, unlike permanently chiral substrates such as 4, the
pyrazolidinone substrates need not be synthesized from chiral
pool precursors. Thus, we hoped to establish a “chiral relay”
situation in which the chiral Lewis acid would bias the fluxional
nitrogen, establish the pyrazolidinone as an effective chiral
auxiliary where the nitrogen substituent (the “relay group”) could
participate in face shielding, and if possible have the chiral
ligand with static chirality and the relay group work synergisti-
cally to amplify enantioselectivity.6
Scheme 2. Enantioselective Reactions Utilizing Pyrazolidinone
Substrates
Davies introduced a related concept for relaying stereochem-
ical information using a chiral auxiliary to install asymmetry.7
Similar approaches have also been evaluated in other labora-
tories, most notably by Clayden8 and Hitchcock.9 Our approach
differs in that chirality is not inherent to our substrate but is
indirectly relayed from a chiral Lewis acid through the template
to the reaction centers.10-13
(5) (a) Evans, D. A.; Miller, S. J.; Lectka, T. J. Am. Chem. Soc. 1993, 115,
6460. (b) Evans, D. A.; Barnes, D. M.; Johnson, J. S.; Lectka, T.; von
Matt, P.; Miller, S. J.; Murry, J. A.; Norcross, R. D.; Shaughnessy, E. A.;
Campos, K. R. J. Am. Chem. Soc. 1999, 121, 7582. (c) Evans, D. A.; Miller,
S. J.; Lectka, T.; von Matt, P. J. Am. Chem. Soc. 1999, 121, 7559.
(6) For reviews on the concept of stereochemical relay and related science,
see: (a) Corminboeuf, O.; Quaranta, L.; Renaud, P.; Liu, M.; Jasperse,
C. P.; Sibi, M. P. Chem. Eur. J. 2003, 9, 29. (b) Walsh, P. J.; Lurain, A.
E.; Balsells, J. Chem. ReV. 2003, 103, 3297. (c) Clayden, J.; Vassiliou, N.
Org. Biomol. Chem. 2006, 4, 2667. (d) Mikami, K.; Yamanaka, M. Chem.
ReV. 2003, 103, 3369.
(7) (a) Bull, S. D.; Davies, S. G.; Fox, D. J.; Garner, A. C.; Sellers, T. G. R.
Pure Appl. Chem. 1998, 70, 1501. (b) Bull, S. D.; Davies, S. G.; Epstein,
S. W.; Ouzman, J. V. A. Chem. Commun. 1998, 659. (c) Bull, S. D.; Davies,
S. G.; Fox, D. J.; Sellers, T. G. R. Tetrahedron: Asymmetry 1998, 9, 1483.
(d) Bull, Steven D.; Davies, Stephen G.; Epstein, Simon W.; Leech, Michael
A.; Ouzman, Jacqueline V. A. J. Chem. Soc., Perkin Trans. 1 1998, 2321.
(8) (a) Clayden, J.; Pink, J. H.; Yasin, S. A. Tetrahedron Lett. 1998, 39, 105.
(b) Betson, M. S.; Clayden, J.; Helliwell, M.; Johnson, P.; Lai, L. W.; Pink,
J. H.; Stimson, C. C.; Vassiliou, N.; Westlund, N.; Yasin, S. A.; Youssef,
L. H. Org. Biomol. Chem. 2006, 4, 424. (c) Clayden, J.; Westlund, N.;
Frampton, C. S.; Helliwell, M. Org. Biomol. Chem. 2006, 4, 455.
(9) For use of the relay concept in chiral auxiliary development see: (a) Casper,
D. M.; Blackburn, J. R.; Maroules, C. D.; Brady, T.; Esken, J. M.; Ferrence,
G. M.; Standard, J. M.; Hitchcock, S. R. J. Org. Chem. 2002, 67, 8871.
(b) Casper, D. M.; Burgeson, J. R.; Esken, J. M.; Ferrence, G. M.;
Hitchcock, S. R. Org. Lett. 2002, 4, 3739. (c) Hoover, T. R.; Hitchcock,
S. R. Tetrahedron: Asymmetry 2003, 14, 3233. (d) Hitchcock, S. R.; Casper,
D. M.; Vaughn, J. F.; Finefield, J. M.; Ferrence, G. M.; Esken, J. M.
J. Org. Chem. 2004, 69, 714. (e) Burgeson, J. R.; Renner, M. K.; Hardt, I.;
Ferrence, G. M.; Standard, J. M.; Hitchcock, S. R. J. Org. Chem. 2004,
69, 727. (f) Burgeson, J. R.; Dore, D. D.; Standard, J. M.; Hitchcock, S. R.
Tetrahedron 2005, 61, 10965.
(10) For examples that apply to the relay concept, see: (a) Quaranta, L.; Renaud,
P. Chimia 1999, 53, 364. (b) Quaranta, L. Ph.D. thesis, University of
Fribourg, Switzerland, 2000. (c) Quaranta, L.; Corminboeuf, O.; Renaud,
P. Org. Lett. 2002, 4, 39. (d) Corminboeuf, O.; Renaud, P. Org. Lett. 2002,
4, 1731.
(11) Balsells, J.; Walsh, P. J. J. Am. Chem. Soc. 2000, 122, 1802.
(12) For selective coordination of enantiotopic sulfone oxygen and relay of
stereochemistry, see: (a) Hiroi, K.; Ishii, M. Tetrahedron Lett. 2000, 41,
7071. (b) Wada, E.; Pei, W.; Kanemasa, S. Chem. Lett. 1994, 2345. (c)
Wada, E.; Yasuoka, H.; Kanemasa, S. Chem. Lett. 1994, 1637. (d) Evans,
D. A.; Campos, K. R.; Tedrow, J. S.; Michael, F. E.; Gagne´, M. R. J. Am.
Chem. Soc. 2000, 122, 7905. (e) Sugimoto, H.; Nakamura, S.; Hattori, M.;
Ozeki, S.; Shibata, N.; Toru, T. Tetrahedron Lett. 2005, 46, 8941. (f)
Sugimoto, H.; Nakamura, S.; Watanabe, Y.; Toru, T. Tetrahedron:
Asymmetry 2003, 14, 3043.
The pyrazolidinone templates of interest to this study were
prepared in a straightforward manner from the corresponding
â,â-disubstituted enoates (Scheme 1). Condensation of the
enoates with hydrazine hydrate gave the desired N(1) unsub-
stituted pyrazolidinones 5 in high yields. N(1) substitution was
accomplished by either reductive amination or selective alky-
lation of the more nucleophilic N(1) nitrogen. Finally, acylation
of 6 at N-2 occurs upon deprotonation with n-BuLi or LiHMDS
and subsequent addition of the appropriate R,â-unsaturated acid
chloride.
Prior reports from our laboratory have demonstrated the utility
of R,â-unsaturated pyrazolidinone imides in several asymmetric
transformations (Scheme 2). Pyrazolidinone substrates have
proven to be very effective for bisoxazoline/Lewis acid-
catalyzed Diels-Alder cycloadditions (eq 1),14 1,3-dipolar
cycloadditions of nitrones (eq 2),15 and nitrile oxides (eq 3) at
ambient temperature.16 Pyrazolidinone templates have also
(13) For the use of relay concept in chiral ligand design, see: (a) Sibi, M. P.;
Zhang, R.; Manyem, S. J. Am. Chem. Soc. 2003, 125, 9306. (b) Sibi,
M. P.; Stanley, L. M. Tetrahedron: Asymmetry 2004, 16, 3353. (c) Malkov,
A. V.; Stoncius, S.; MacDougall, K. N.; Mariani, A.; McGeoch, G. D.;
Kocovsky, P. Tetrahedron 2006, 62, 264. (d) Malkov, A. V.; Hand, J. B.;
Kocovsky, P. Chem. Commun. 2003, 1948. (e) Maughan, M. A. T.; Davies,
I. G.; Claridge, T. D. W.; Courtney, S.; Hay, P.; Davis, B. G. Angew. Chem.,
Int. Ed. 2003, 42, 3788.
9
396 J. AM. CHEM. SOC. VOL. 129, NO. 2, 2007