A. Khaled et al. / Tetrahedron: Asymmetry 18 (2007) 2121–2124
2123
O
O
CO2Bn
NHZ
CO2Bn
NHZ
CO2Bn
NHZ
a
b
HO
(HO)2P O
(tBuO)2P
O
9
3
10
c
5
OAc
OAc
AcO
AcO
OAc
O
O
AcO
AcO
d
O
P
2
AcO
O
P
CO2Bn
NHZ
CO2H
NH2
O
O
O
O
2
1
8
Scheme 2. Reagents and conditions: (a) (i) (tBuO)2PNiPr2, 1H-tetrazole, CH2Cl2, THF; (ii) H2O2 (60%); (b) TFA, CH2Cl2 (100%); (c) 5 (2.2 equiv),
˚
Ag2CO3 (2.2 equiv), PhCH3, molecular sieves 4 A (45%); (d) H2, Pd/C, THF, MeOH (100%).
phosphoramidite reaction with benzyl N-benzyloxycar-
bonyl-L-serine 3 followed by in situ H2O2 oxidation of the
resulting phosphite to phosphate 10 (60%).11 Next, acido-
lysis by trifluoroacetic acid in dichloromethane afforded
the corresponding phosphate 9 in quantitative yield.12 The
silver assisted nucleophilic substitution of tetra-O-acetyl-
a-D-mannopyranosyl bromide 5 by phosphate 9 was then
carried out. The expected protected di-mannosyl serinyl
phosphate 8 was obtained as an enantiomerically pure
a-anomer after flash chromatographic purification13 (45%
References
1. (a) Grunewald, S.; Matthijs, G.; Jaeken, J. Pediatr. Res. 2002,
52, 618–624; (b) Jaeken, J.; Carchon, H. Curr. Opin. Pediatr.
2004, 16, 434–439.
2. (a) Aebi, M.; Hennet, T. Trends Cell. Biol. 2001, 11, 136–141;
(b) de Lonlay, P.; Seta, N.; Barrot, S.; Chabrol, B.; Drouin,
V.; Gabriel, B. M.; Journel, H.; Kretz, M.; Laurent, J.; Le
Merrer, M.; Leroy, A.; Pedespan, D.; Sarda, P.; Villeneuve,
N.; Schmitz, J.; van Schaftingen, E.; Matthijs, G.; Jaeken, J.;
Korner, C.; Munnich, A.; Saudubray, J. M.; Cormier-Daire,
V. J. Med. Genet. 2001, 38, 14–19.
3. (a) van Schafftingen, E.; Jaeken, J. FEBS Lett. 1995, 337, 318–
320; (b) Jaeken, J.; Artigas, J.; Barone, R.; Fiumara, A.; de
Koening, T. J.; Poll-The, B. T.; de Rijk-van Andel, J. F.;
Hoffman, G. F.; Assmann, B.; Mayatepek, E.; Pineda, M.;
Vilaseca, M. A.; Saudubray, J. M.; Schluˆter, B.; Wevers, R.;
Van Schafftingen, E. J. Inherit. Metab. Dis. 1997, 20, 447–449.
0
0
yield, JH1,H2 = 1.4 Hz, JH1,P = 6.6 Hz, JH1 ;H2 ¼ 1:2 Hz,
0
JH1 ;P ¼ 5:9 Hz). Finally, simultaneous removal of both
benzyl and benzyloxycarbonyl protective groups was per-
formed by hydrogenolysis in the presence of palladium
on charcoal in THF–methanol to afford the targeted
di-mannosyl serinylphosphate 1 in quantitative yield.
´
´
4. Hardre, R.; Khaled, A.; Willemetz, A.; Dupre, T.; Moore, S.;
Gravier-Pelletier, C.; Le Merrer, Y. Bioorg. Med. Chem. Lett.
2007, 17, 152–155.
3. Conclusion
5. For the synthesis and biological evaluation of other M1P
prodrugs displaying mono-mannosyl phosphate structure,
see: (a) Rutschow, S.; Thiem, J.; Kranz, C.; Marquardt, T.
Bioorg. Med. Chem. 2002, 10, 4043–4049; (b) Muus, U.;
Kranz, C.; Marquardt, T.; Meier, C. Eur. J. Org. Chem. 2004,
1228–1235; (c) Eklund, E. A.; Merbouh, N.; Ichikawa, M.;
Nishikawa, A.; Clima, J. M.; Dorman, J. A.; Norberg, T.;
Freeze, H. H. Glycobiology 2005, 15, 1084–1093.
6. de Albuquerque Sylva, A. T.; Chung, M. C.; Castro, L. F.;
Guido, R. V. C.; Ferreira, E. I. Min.-Rev. Med. Chem. 2005,
5, 893–914.
7. For the synthesis of a-D-mannosyl phosphate serine deriva-
tives see: (a) Elsayed, G. A.; Boons, G.-J. Synlett 2003, 1373–
1375; (b) Majumdar, D.; Elsayed, G. A.; Buskas, T.; Boons,
G.-J. J. Org. Chem. 2005, 70, 1691–1697.
8. Ono, N.; Yamada, T.; Saito, T.; Tanaka, K.; Kaji, A. Bull.
Chem. Soc. Jpn. 1978, 51, 2401–2404.
In conclusion, we have described an efficient synthesis of
di-mannosyl serinyl phosphate in a convergent strategy
involving five steps from the commercially available N-benz-
yloxycarbonyl-L-serine and peracetyl a-D-mannopyrano-
syl bromide in 25% overall yield. To the best of the
knowledge, this is the first synthesis of a phosphotriester
involving two sugars linked at their anomeric position
and an aminoacid. Based on this strategy, further work will
focus upon the introduction of various aminoacid or pep-
tide derivatives on the di-mannosyl phosphate to investi-
gate their biological properties related to a potential
CDG-Ia treatment. Furthermore, we also reported the suc-
cessful synthesis of the phosphoserine according to Mitsun-
obu conditions. The versatility and the scope of that direct
O-phosphorylation towards both phosphate reagents and
aminoacids are currently being studied.
9. Polt, R.; Szabo, L.; Treiberg, J.; Li, Y.; Hruby, V. J. J. Am.
Chem. Soc. 1992, 114, 10249–10258.
10. Farquhar, D.; Khan, S.; Srivastva, D. N.; Saunders, P. P.
J. Med. Chem. 1994, 37, 3902–3909.
20
1
11. Selected physical data for 10: ½aꢀD ¼ ꢁ6 (c 1.0, CH2Cl2); H
NMR (CDCl3, 250 MHz): d 7.33–7.26 (m, 10H, 2Ph), 6.03
(d, 1H, NH), 5.19 (s, 2H, CO2CH2Ph), 5.12 (s, 2H,
NHCO2CH2Ph), 4.59–4.56 (m, 1H, Ha), 4.45–4.30 (m, 1H,
CHa–OP), 4.27–4.19 (m, 1H, CHb–OP), 1.48 (18H, C(CH3)3);
13C NMR (CDCl3, 63 MHz): d 169.1 (CO2), 155.9 (CONH),
Acknowledgement
We gratefully acknowledge Orphan Europe for their finan-
cial support and for providing post-doctoral research fel-
lowship to A.K.