Y. Wang et al. / Bioorg. Med. Chem. Lett. 18 (2008) 4907–4912
4911
Table 3
6. Schindler, T.; Bornmann, W.; Pellicena, P.; Miller, W. T.; Clarkson, B.; Kuriyan, J.
Science 2000, 289, 1938.
Kinase selectivity profile of compound 10a
7. Cowan-Jacob, S. W.; Guez, V.; Fendrich, G.; Griffin, J. D.; Fabbro, D.; Furet, P.;
Liebetanz, J.; Mestan, J.; Manley, P. W. Mini-Rev. Med. Chem. 2004, 4, 285.
8. Donato, N. J.; Wu, J.-Y.; Stapley, J.; Gallick, G.; Lin, H.; Arlinghaus, R.; Talpaz, M.
Blood 2003, 101, 690.
9. (a) Dai, Y.; Rahmani, M.; Corey, S. J.; Dent, P.; Grant, S. J. Biol. Chem. 2004, 279,
34227; (b) Donato, N. J.; Wu, J. Y.; Stapley, J.; Lin, H.; Arlinghaus, R.; Aggarwal,
B. B.; Shishodin, S.; Albitar, M.; Hayes, K.; Kantarjian, H.; Talpaz, M. Cancer Res.
2004, 64, 672; (c) Hofmann, W. K.; de Vos, S.; Elashoff, D.; Gschaidmeier, H.;
Hoelzer, D.; Koeffler, H. P.; Ottmann, O. G. Lancet 2002, 359, 481.
10. Nagar, B.; Bormann, W. G.; Pellicena, P.; Schindler, T.; Veach, D. R.; Miller, W.
T.; Clarkson, B.; Kuriyan, J. Cancer Res. 2002, 62, 4236.
Kinase
Enzyme IC50 (nM)
Kinase
Enzyme IC50 (nM)
Src (SFK)
Abl
Fms
EphB1
c-Raf
EphB4
Flt4
<0.3
1
3
Kit
Flt1
414
591
Abl(T315I)
Aurora
CDK2/CyclinA
EphA7
Flt3
>1000
>1000
>1000
>1000
>1000
>1000
6
21
30
151
221
PDGFR
a
InsR
11. Klejman, A.; Schreiner, S. J.; Nieborowska-Skorska, M.; Slupianek, A.; Wilson,
M.; Smithgall, T. E.; Skorski, T. EMBO J. 2002, 21, 5766.
12. (a) Martinelli, G.; Soverini, S.; Rosti, G.; Baccarani, M. Leukemia 2005, 19, 1872;
(b) Weisberg, E.; Manley, P. W.; Cowan-Jacob, S. W.; Hochhaus, A.; Griffin, J. D.
Nat. Rev. Cancer 2007, 7, 345; (c) Boschelli, D. H.; Boschelli, F. Drugs Future
2007, 32, 481.
13. (a) Azam, M.; Nardi, V.; Shakespeare, W. C.; Metcalf, C. A.; Bohacek, R. S.; Wang,
Y.; Sundaramoorthi, R.; Sliz, P.; Veach, D. R.; Bornmann, W. G.; Clarkson, B.;
Dalgarno, D. C.; Sawyer, T. K.; Daley, G. D. Proc. Natl. Acad. Sci. 2006, 103, 9244;
(b) Brunton, V. G.; Avizienyte, E.; Fincham, V. J.; Serrels, B.; Metcalf, C. A., III;
Sawyer, T. K.; Frame, M. C. Cancer Res. 2005, 65, 1335; (c) O’Hare, T.; Pollock, R.;
Stoffregen, E. P.; Keats, J. A.; Abdullah, O. M.; Moseson, E. M.; Rivera, V. M.;
Tang, H.; Metcalf, C. A., III; Bohacek, R. S.; Wang, Y.; Sundaramoorthi, R.;
Shakespeare, W. C.; Dalgarno, D.; Clackson, T.; Sawyer, T. K.; Deininger, M. W.;
Druker, B. J. Blood 2004, 104, 2532.
14. Dalgarno, D.; Stehle, T.; Narula, S.; Schelling, P.; Van Schravendijk, M. R.;
Adams, S.; Andrade, L.; Keats, J.; Ram, M.; Jin, L.; Grossman, T.; MacNeil, I.;
Metcalf, C.; Shakespeare, W.; Wang, Y.; Keenan, T.; Sundaramoorthi, R.;
Bohacek, R.; Weigele, M.; Sawyer, T. Chem. Biol. Drug Des. 2006, 67, 46.
15. Noronha, G.; Cao, J.; Zneg, B.; Mak, C.; McPherson, A.; Renick, J.; Pathak, V. P.;
Chow, C.; Palanki, M.; Soll, R. M.; Lohse, D. L.; Hood, J. D.; Dneprovskaia, E. US
Patent 2007/0161645 (some of the compounds disclosed in this patent have a
phenethenyl structure in the hydrophobic pocket).
16. Lombardo, L. J.; Lee, F. Y.; Chen, P.; Norris, D.; Barrish, J. C.; Behnia, K.;
Castaneda, S.; Cornelius, L. A. M.; Das, J.; Doweyko, A. M.; Fairchild, C.; Hunt, J.
T.; Inigo, I.; Johnston, K.; Kamath, A.; Kan, D.; Klei, H.; Marathe, P.; Pang, S.;
Peterson, R.; Pitt, S.; Schieven, G. L.; Schmidt, R. J.; Tokarski, J.; Wen, M.-L.;
Wityak, J.; Borzilleri, R. M. J. Med. Chem. 2004, 47, 6658.
17. Boesen, T.; Madsen, C.; Henriksen, U.; Dahl, O. J. Chem. Soc., Perkin Trans. 1 2000,
2015.
18. Wang, Y.; Huang, W.-S.; Sundaramoorthi, R.; Zhu, X.; Thomas, R. M.;
Shakespeare, W. C.; Dalgarno, D. C.; Sawyer, T. K. PCT Int. Appl., WO 2007/
021937.
19. Brun, V.; Legraverend, M.; Grierson, D. S. Tetrahedron Lett. 2001, 42, 8161.
20. Shakespeare, W. C.; Metcalf, C. A.; Sawyer, T. K.; Wang, Y.; Sundaramoorthi, R.;
Dalgarno, D. C.; Bohacek, R.; Weigele, M. Synthesis of 4-(dialkyl-phosphoryl)-
benzeneamine, PCT Int. Appl., WO 2005009348.
21. Huang, W.-S.; Wang, Y.; Sundaramoorthi, R.; Thomas, R. M.; Wen, D.; Liu, S.;
Lentini, S.; Das, S.; Banda, G.; Sawyer, T. K.; Shakespeare, W. C. Tetrahedron Lett.
2007, 48, 7388.
To assess the cellular activities of these compounds, we used
both K562 (a Bcr-Abl positive human derived CML cell line) and
Ba/F3 cells transfected with wild-type (WT) Bcr-Abl.26 Compound
10a inhibited the proliferation of K562 and Ba/F3 cell lines with
IC50s of 109 and 168 nM, respectively, which is similar to imatinib
(272 and 650 nM, respectively). The cellular activities of the com-
pounds with R1 or R3 modifications generally track well with their
Abl enzyme inhibitory potencies. The only exceptions are com-
pounds 10e and 12b; their cellular data are more in line with their
Src inhibitory activities rather than that of Abl, the reason for
which is currently unknown. One of the most potent kinase inhib-
itors of this series, compound 10g, demonstrated a 10-fold increase
in cellular potencies relative to 10a (Table 1).
To probe the ADME properties of this series we evaluated sev-
eral compounds in a rat pharmacokinetics model. Interestingly, de-
spite our early concerns about the potential metabolic instability of
the vinyl linkage, several compounds possessed good PK proper-
ties. Compounds 10a, 10b, and 6c were all characterized as having
moderate to high volumes of distribution (Vdss) and when dosed
orally, they were rapidly absorbed and demonstrated favorable
half-lives (t1/2). On average, their oral bioavailability (F%) in these
studies was 20%. Compounds 10e and 10f, both of which contain
an indazole ring, were not orally bioavailable, presumably due to
the rapid bioconjugation of the indazole NH (Table 2).
To evaluate its selectivity profile, compound 10a was screened
in an enzymatic assay against a panel of 35 tyrosine and serine–
threonine kinases.27 The data confirmed the potencies against both
Src (SFK) and Abl, and revealed low to double digit nM potencies
against Fms, EphB1, c-Raf and EphB4. The compound was inactive
against those kinases with larger gate-keeper residues such as Aur-
ora (Leu), CDK2 (Phe), InsR (Phe), and Abl containing the T315I
point mutant (Table 3).
In conclusion, a novel series of 9-arenethenyl purines possess-
ing a trans double bond were identified as potent inhibitors of
Src and Abl tyrosine kinases. Several compounds in this class po-
tently inhibited the proliferation of cell lines driven by Bcr-Abl
with at least 10-fold greater potency than imatinib. Interestingly,
the N-linked double bond was not rapidly metabolized, yielding
compounds with good pharmacokinetic properties.
22. Hutchison, A.; Yuan, J.; Lee, K.; Maynard, G.; Chenard, B. L.; Liu, N.; Guo, Q.;
Guo, Z.; Hrnciar, P. PCT Int. Appl., WO 2004043925.
23. Src enzymatic assay protocol. Inhibition of Src activity by ARIAD
Pharmaceuticals, Inc. compounds (AP compounds) was measured in
a
homogeneous time-resolved fluorescence resonance energy transfer (TR-
FRET) assay using partially purified full length human Src from a baculovirus
expression system (Upstate Biotechnology Inc.) and a biotinylated phospho-
kinase substrate peptide (amino acid Sequence—Biotin-KVEKIGEGTYGVVYK-
NH2) as the substrate peptide (Pierce). Kinase reactions were carried out in
complete LANCE kinase buffer (LKB); 20 mM Na–Hepes, pH 7.4, 0.1 mg/mL
BSA, 1 mM ATP, 10 mM MgCl2, 0.41 mM DTT, in round-bottomed black 96-well
Microfluor plates (Dynex Technologies Inc.) pre-blocked with 1% BSA in PBS at
4 °C overnight. For the kinase reaction, compound dilutions were incubated
with Src (165 pM) and substrate peptide (50 nM) for 2 h at 37 °C in a total
volume of 0.1 mL LKB. The kinase reaction was terminated by addition of
0.05 mL of a kill/detection solution containing 15 lM of a potent ARIAD kinase
Acknowledgements
inhibitor, 6 nM Europium-labeled anti-phosphotyrosine mAb PT66 and 60 nM
allophycocyanin-labeled streptavidin (LANCETM reagents from Perkin-Elmer
Inc.). Assay plates were incubated at room temperature in the dark for 20 min
prior to reading fluorescence at 615 and 665 nm on a Victor2V plate reader
The authors thank Narayana Narasimhan, Patricia Ryan, Qurish
Mohemmad, and Manfred Weigele from ARIAD for useful
discussions.
(Perkin-Elmer). Positive and negative controls and
a standard curve for
phosphorylated PKS1 peptide were included on each plate. Data values were
transferred to an Excel spreadsheet and IC50s were calculated from the
fluorescence at 665 nm by interpolation between the averaged duplicate well
data on 3-fold serial dilutions of AP Compounds. No compound effects on the
615 nm fluorescence were observed.
References and notes
1. Thomas, S. M.; Brugge, J. S. Annu. Rev. Cell Dev. Biol. 1997, 13, 513.
2. Summy, J. M.; Gallick, G. E. Cancer Metastasis Rev. 2003, 22, 337.
3. Sawyer, T.; Boyce, B.; Dalgarno, D.; Iuliucci, J. Expert Opin. Investig. Drugs 2001,
10, 1327.
4. Shah, Y. M.; Rowan, B. G. Mol. Endocrinol. 2005, 19, 732.
5. Pengetnze, Y.; Steed, M.; Roby, K. F.; Terranova, P. F.; Taylor, C. C. Biochem.
Biophys. Res. Commun. 2003, 309, 377.
24. The Abl enzymatic assay protocol is described in Ref. 15.
25. The Abl/10f structure was resolved and will be published elsewhere.
26. K562 and Ba/F3 cell assay format. For the cell proliferation assay, the K-562
human wild-type Bcr-Abl CML cell line and the murine pro-B Ba/F3 cell line
stably transfected with a construct expressing wild-type Bcr-Abl were used. K-
562 was obtained from the American Type Culture Collection (ATCC) and
maintained in Iscove’s modified Dulbecco’s medium with 10% FBS. The Ba/F3