A R T I C L E S
Leman et al.
suggested to promote catalysis. Further, positioning lysine
residues within the hydrophobic core of four-helix bundle
peptides has been shown to afford site selective Lys acylation
stemming from side chain pKa depressions of up to one pK unit.5
Our group and others have demonstrated bimolecular peptide
ligation reactions with efficiencies ([kcat/KM]/kuncat) of up to 5
orders of magnitude,6 but in contrast to the designs described
above, nearly all the observed rate enhancement in these ligases
derived from entropic templating effects. Other examples of
designed enzyme mimetics have employed prosthetic cofactors
such as metal ions, porphyrins, flavins, hemes, or pyridoxamines
in peptide-based scaffolds,7 although in many cases the resulting
reactivity was not appreciably different from the isolated
prosthetic group.
Nonribosomal peptide synthetases (NRPSs)8 generate peptide
sequences by first loading amino acid substrates from solution
onto carrier domains as aminoacyl thiolesters and subsequently
catalyzing directed intermodular aminoacyl transfer (Figure 1a).
The present study focuses on the composite active sites located
at the helical interfaces of recently designed coiled-coil peptides
(Figure 2)9 designed to mimic the two main steps of NRPS
(aminoacyl loading and intermodular acyl transfer) by nonco-
valently assembling aminoacyl donor and acceptor modules into
productive supramolecular complexes (Figures 1b, 2).9 In our
designs peptide self-assembly positions a cysteine residue, used
for the covalent capture of substrates from solution via trans-
thiolesterification (substrate loading step to generate the ami-
noacyl donor site), adjacent to an aminoacyl acceptor site
Figure 1. Schematic representation of aminoacyl substrate loading and
intermodular aminoacyl transfer reactions in (a) nonribosomal peptide
synthetases (NRPSs) and (b) the supramolecular peptides described here.
A ) adenylation domain, T ) thiolation domain, C ) condensation domain,
SNAC ) N-acetylcysteamine.
(5) (a) Allert, M.; Baltzer, L. Chem.sEur. J. 2002, 8, 2549-60. (b) Andersson,
L. K.; Caspersson, M.; Baltzer, L. Chem.sEur. J. 2002, 8, 3687-97.
(6) (a) Lee, D. H.; Granja, J. R.; Martinez, J. A.; Severin, K.; Ghadiri, M. R.
Nature 1996, 382, 525-8. (b) Severin, K.; Lee, D. H.; Martinez, J. A.;
Ghadiri, M. R. Chem.sEur. J. 1997, 3, 1017-24. (c) Severin, K.; Lee, D.
H.; Kennan, A. J.; Ghadiri, M. R. Nature 1997, 389, 706-9. (d) Yao, S.;
Ghosh, I.; Zutshi, R.; Chmielewski, J. J. Am. Chem. Soc. 1997, 119, 10559-
60. (e) Yao, S.; Ghosh, I.; Zutshi, R.; Chmielewski, J. Nature 1998, 396,
447-50. (f) Kennan, A. J.; Haridas, V.; Severin, K.; Lee, D. H.; Ghadiri,
M. R. J. Am. Chem. Soc. 2001, 123, 1797-803. (g) Matsumura, S.;
Takahashi, T.; Ueno, A.; Mihara, H. Chem.sEur. J. 2003, 9, 4829-37.
(7) (a) Sasaki, T.; Kaiser, E. T. J. Am. Chem. Soc. 1989, 111, 380-1. (b)
Mihara, H.; Tomizaki, K. Y.; Nishino, N.; Fujimoto, T. Chem. Lett. 1993,
1533-6. (c) Choma, C. T.; Lear, J. D.; Nelson, M. J.; Dutton, P. L.;
Robertson, D. E.; DeGrado, W. F. J. Am. Chem. Soc. 1994, 116, 856-65.
(d) Geier, G. R.; Sasaki, T. Peptides: Chemistry, Structure and Biology,
Proceedings of the American Peptide Symposium, 14th, Columbus, Ohio,
June 18-23, 1995 1996, 591-2. (e) Roy, R. S.; Imperiali, B. Protein Eng.
1997, 10, 691-8. (f) Sakamoto, S.; Ueno, A.; Mihara, H. J. Chem. Soc.,
Perkin Trans. 2 1998, 2395-404. (g) Baltzer, L. Curr. Opin. Struct. Biol.
1998, 8, 466-70. (h) Shogren-Knaak, M. A.; Imperiali, B. Bioorg. Med.
Chem. 1999, 7, 1993-2002. (i) Geier, G. R., III; Sasaki, T. Tetrahedron
1999, 55, 1859-70. (j) Tomizaki, K.; Tsunekawa, Y.; Akisada, H.; Mihara,
H.; Nishino, N. J. Chem. Soc., Perk. Trans. 2 2000, 4, 813-22. (k)
Lombardi, A.; Nastri, F.; Pavone, V. Chem. ReV. 2001, 101, 3165-89. (l)
Rosenblatt, M. M.; Wang, J.; Suslick, K. S. Proc. Natl. Acad. Sci. U.S.A.
2003, 100, 13140-5. (m) Kaplan, J.; DeGrado, W. F. Proc. Natl. Acad.
Sci. U.S.A. 2004, 101, 11566-70. (n) Sakamoto, S.; Ito, A.; Kudo, K.;
Yoshikawa, S. Chem.sEur. J. 2004, 10, 3717-26. (o) Butterfield, S. M.;
Goodman, C. M.; Rotello, V. M.; Waters, M. L. Angew. Chem., Int. Ed.
2004, 43, 724-7. (p) Huang, S. S.; Koder, R. L.; Lewis, M.; Wand, A. J.;
Dutton, P. L. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 5536-41. (q) Ishida,
M.; Dohmae, N.; Shiro, Y.; Oku, T.; Iizuka, T.; Isogai, Y. Biochemistry
2004, 43, 9823-33. (r) Zhuang, J.; Amoroso, J. H.; Kinloch, R.; Dawson,
J. H.; Baldwin, M. J.; Gibney, B. R. Inorg. Chem. 2004, 43, 8218-20. (s)
Rossi, P.; Tecilla, P.; Baltzer, L.; Scrimin, P. Chem.sEur. J. 2004, 10,
4163-70. (t) Nanda, V.; Rosenblatt, M. M.; Osyczka, A.; Kono, H.;
Getahun, Z.; Dutton, P. L.; Saven, J. G.; DeGrado, W. F. J. Am. Chem.
Soc. 2005, 127, 5804-5. (u) Cochran, F. V.; Wu, S. P.; Wang, W.; Nanda,
V.; Saven, J. G.; Therien, M. J.; DeGrado, W. F. J. Am. Chem. Soc. 2005,
127, 1346-7. (v) Fukushima, H.; Sakamoto, S.; Kudo, K. Pept. Sci. 2006,
42, 419-22.
Figure 2. Representations of the composite aminoacyl transfer active sites.
(a) Schematic diagram illustrating important principles of the active site
design. (b) The positions of active site residues (yellow sticks, boxed) and
secondary sphere residues (blue sticks) for sequence 1 are modeled onto
the crystal structure12 of a homotetrameric coiled-coil scaffold. For clarity,
residues on only one of the four symmetry-related interhelical faces are
shown. (c) Simplified active site representation for peptide 1.
provided by a covalently tethered amino acid or the ꢀ-amine of
an active site lysine (Figure 1b). The resulting high effective
concentration of aminoacyl donor and acceptor moieties,10 as
well as the potential electrostatic and/or general acid/base
contributions provided by the flanking X1 and X2 residues, were
expected to afford significant intermodular aminoacyl transfer
rate accelerations. In the present study, we have systematically
varied the inter-residue distances, identities, and positions of
active site residues using 48 rationally designed peptide
sequences (Table 1) to probe the influence of active site
microenvironments on the overall catalytic efficiency. We
demonstrate that the substrate loading and intermodular ami-
(10) (a) Wieland, T.; Bokelmann, E.; Bauer, L.; Lang, H. U.; Lau, H.; Schafer,
W. Justus Liebigs Ann. Chem. 1953, 583, 129-49. (b) Brenner, M. Pept.
Proc. Eur. Pept. Symp., 8th 1967, 1-7. (c) Neumann, H.; Shashoua, V.
E.; Sheehan, J. C.; Rich, A. Proc. Natl. Acad. Sci. U.S.A. 1968, 61, 1207-
14. (d) Kemp, D. S. Biopolymers 1981, 20, 1793-804. (e) Sasaki, S.;
Shionoya, M.; Koga, K. J. Am. Chem. Soc. 1985, 107, 3371-2. (f) Dawson,
P. E.; Muir, T. W.; Clark-Lewis, I.; Kent, S. B. H. Science 1994, 266,
776-9. (g) Tamura, K.; Schimmel, P. Proc. Natl. Acad. Sci. U.S.A. 2001,
98, 1393-7. (h) Offer, J.; Boddy, C. N. C.; Dawson, P. E. J. Am. Chem.
Soc. 2002, 124, 4642-6. (i) Leleu, S.; Penhoat, M.; Bouet, A.; Dupas, G.;
Papamicaeel, C.; Marsais, F.; Levacher, V. J. Am. Chem. Soc. 2005, 127,
15668-9. (j) Snyder, T. M.; Liu, D. R. Angew. Chem., Int. Ed. 2005, 44,
7379-82. (k) Chen, G.; Warren, J. D.; Chen, J.; Wu, B.; Wan, Q.;
Danishefsky, S. J. J. Am. Chem. Soc. 2006, 128, 7460-2.
(8) (a) Cane, D. E.; Walsh, C. T. Chem. Biol. 1999, 6, R319-R25. (b) Khosla,
C.; Harbury, P. B. Nature 2001, 409, 247-52. (c) Sieber, S. A.; Marahiel,
M. A. Chem. ReV. 2005, 105, 715-38. (d) Fischbach, M. A.; Walsh, C. T.
Chem. ReV. 2006, 106, 3468-96.
(9) Wilcoxen, K. M.; Leman, L. J.; Weinberger, D. A.; Huang, Z.-Z.; Ghadiri,
M. R. J. Am. Chem. Soc. 2007, 129, 748-9.
9
2960 J. AM. CHEM. SOC. VOL. 129, NO. 10, 2007