C O M M U N I C A T I O N S
J. Y. AdV. Organomet. Chem. 2004, 51, 1-52.
bridging hydrogen, 1.83(2) Å, is considerably longer than the Si-H
distance to the terminal hydrogen, 1.54(3) Å. The Si(4)-H
distances, 1.46(4) and 1.45(3) Å, are typical of Si-H distances in
hydrosilanes.16 The 0.3 Å lengthening of the Si-H distances to
the bridging hydrogen atoms reflects the agostic interactions with
the Ti center.16 The 0.1 Å lengthening of the Si-H distances to
the terminal hydrogen atoms on Si(1) and Si(3) can be ascribed to
the strong trans influence of their respective agostic hydrides, or
to the higher effective coordination number of these silicon atoms.
The axial phosphorus atoms are bent away from the tetrasilane
group to give a P(1)-Ti-P(3) angle of 157.53(6)°. The average
Ti-P(axial) distance, 2.520(2) Å, and the average Ti-P(equatorial)
distance, 2.654(2) Å, fall near the extremes of the 2.51-2.66 Å
range observed for Ti-P distances in other six-coordinate com-
plexes.17 The longer Ti-P(equatorial) distances may be due to the
trans influence of the tetrasilane group.
(4) (a) Samuel, E.; Mu, U.; Harrod, J. F.; Dromzee, Y.; Jeannin, Y. J. Am.
Chem. Soc. 1990, 112, 3435-3439. (b) Britten, J.; Mu, Y.; Harrod, J. F.;
Polowin, J.; Baird, M. C.; Samuel, E. Organometallics 1993, 12, 2672-
2676. (c) Woo, H. G.; Harrod, J. F.; He´nique, J.; Samuel, E. Organome-
tallics 1993, 12, 2883-2885. (d) Dioumaev, V. K.; Harrod, J. F.
Organometallics 1996, 15, 3859-3867. (e) Dioumaev, V. K.; Harrod, J.
F. J. Organomet. Chem. 1996, 521, 133-143. (f) Dioumaev, V. K.;
Harrod, J. F. Organometallics 1997, 16, 2798-2807. (g) Spaltenstein,
E.; Palma, P.; Kreutzer, K. A.; Willoughby, C. A.; Davis, W. M.;
Buchwald, S. L. J. Am. Chem. Soc. 1994, 116, 10308-10309. (h) Woo,
H.-G.; Heyn, R. H.; Tilley, T. D. J. Am. Chem. Soc. 1992, 114, 5698-
5707. (i) Sadow, A. D.; Tilley, T. D. Organometallics 2003, 22, 3577-
3585. (j) Sadow, A. D.; Tilley, T. D. J. Am. Chem. Soc. 2003, 125, 9462-
9475. (k) Wu, Z. Z.; Diminnie, J. B.; Xue, Z. L. J. Am. Chem. Soc. 1999,
121, 4300-4301. (l) Wu, Z. Z.; Diminnie, J. B.; Xue, Z. L. Inorg. Chem.
1998, 37, 6366-6372.
(5) Li, Y. H.; Buriak, J. M. Inorg. Chem. 2006, 45, 1096-1102.
(6) Jensen, J. A.; Wilson, S. R.; Schultz, A. J.; Girolami, G. S. J. Am. Chem.
Soc. 1987, 109, 8094-8096.
(7) One equivalent of PhSiH3 remains unchanged in this step.
(8) Presumably H2 is also formed, but quantification was hindered because
its chemical shift is the same as the Si-H resonance for PhMeSiH2.
The NMR spectra of 2 afford additional information about the
bonding between titanium and the tetrasilane molecule. The1JSiH
coupling constants for the non-agostic SiH2Ph group, 186 and 189
Hz, are consistent with those found in free silanes.16 The1JSiH
coupling constants for Si(1)-H(1B) and Si(3)-H(3B) are 127 and
(9) No SiH4 is formed in these reactions, but this product has been seen in
some other systems.4i See also: Wu, F.; Jordan, R. F. Organometallics
2005, 24, 2688-2697.
(10) The 1H NMR spectrum of 1 contains five equal-intensity Si-H resonances
with complex line shapes. Two (at δ 4.50 and 4.75), due to hydrogen
atoms that bridge between Si and Ti, are strongly coupled to all four
phosphorus nuclei. The δ 4.50 resonance is coupled to a Si-H resonance
at δ 6.25, and the δ 4.75 resonance is coupled to a Si-H resonance at δ
6.35. The H-H coupling constants of 14.5 Hz between these sites are
consistent with gem H-Si-H couplings. The fifth Si-H resonance at δ
3.27 is a broad singlet and is assigned to the single Si-H group on the
central silicon atom of the trisilane unit.
1
133 Hz; these smaller JSiH coupling constants are consistent with
the 0.1 Å elongations of these bonds as described above. In contrast,
the 1JSiH coupling constants for Si(1)-H(1A) and Si(3)-H(3A) are
1
less than 40 Hz; JSiH coupling constants reported for M‚‚‚H-Si
(11) Crystal data for C36H58P4Si4Ti (T ) 198 K): monoclinic, space group
P21/n, a ) 11.8357(3) Å, b ) 18.8226(5) Å, c ) 18.9559(6) Å, â )
95.102(1)°, V ) 4206.2(2) Å3, Z ) 4, wR2 ) 0.0779 for 433 variables
and 5847 unique data.
(12) (a) McAlexander, L. H.; Hung, M.; Li, L.; Diminnie, J. B.; Xue, Z.; Yap,
G. P. A.; Rheingold, A. L. Organometallics 1996, 15, 5231-5235. (b)
Igonin, V. A.; Ovchinnikov, Y. E.; Dement’ev, V. V.; Shklover, V. E.;
Timofeeva, T. V.; Frunze, T. M.; Struchkov, Y. T. J. Organomet. Chem.
1989, 371, 187-196. (c) Ro¨sch, L.; Altnau, G.; Erb, W.; Pickardt, J.;
Bruncks, N. J. Organomet. Chem. 1980, 197, 51-57.
(13) Ohff, A.; Kosse, P.; Baumann, W.; Tillack, A.; Kempe, R.; Go¨rls, H.;
Burlakov, V. V.; Rosenthal, U. J. Am. Chem. Soc. 1995, 117, 10399-
10400.
(14) The only shorter Ti-Si distance (2.16 Å in Cp2Ti(µ-SiH2)2TiCp2; Hencken,
G.; Weiss, E. Chem. Ber. 1973, 106, 1747-1751) has been questioned:
Hao, L.; Lebuis, A.-M.; Harrod, J. F.; Samuel, E. J. Chem. Soc., Chem.
Commun 1997, 2193-2194.
(15) (a) You, Y.; Girolami, G. S. Organometallics 1994, 13, 4655-4657. (b)
Huang, Y.; Stephan, D. W. Organometallics 1995, 14, 2835-2842. (c)
Pattiasina, J. W.; van Bolhuis, F.; Teuben, J. H. Angew. Chem., Int. Ed.
Engl. 1987, 26, 330-331. (d) No¨th, H.; Schmidt, M. Organometallics
1995, 14, 4601-4610. (e) Frerichs, S. R.; Stein, B. K.; Ellis, J. E. J. Am.
Chem. Soc. 1987, 109, 5558-5560. (f) de Wolf, J. M.; Meetsma, A.;
Teuben, J. H. Organometallics 1995, 14, 5466-5468.
(16) For reviews of the structure and bonding in transition metal silane
complexes, see (a) Corey, J. Y.; Braddock-Wilking, J. Chem. ReV. 1999,
99, 175-292. (b) Lin, Z. Y. Chem. Soc. ReV. 2002, 31, 239-245. (c)
Nikonov, G. I. AdV. Organomet. Chem. 2005, 53, 217-309. (d) Lachaize,
S.; Sabo-Etienne, S. Eur. J. Inorg. Chem. 2006, 2115-2127.
complexes engaged in agostic interactions fall between 20 and 100
Hz.16 The geminal JH(A)H(B) coupling constants (13.7 Hz) are also
in agreement with the structural data; these 2JHH values are unusually
large because the H(A)-Si-H(B) angles are nearly 180°.
The present results show that TiMe2(dmpe)2 reacts with PhSiH3
to afford two titanium(0) products bearing coordinated oligosilane
ligands; the latter are generated by dehydrogenative coupling
promoted by the titanium center. An interesting mechanistic finding
in this system is that the catalysis converts a linear trisilane to a
branched tetrasilane. The titanium-containing products, Ti(Si3H5-
Ph3)(dmpe)2 and Ti(Si4H6Ph4)(dmpe)2, are the first molecules in
which oligosilanes serve as chelating ligands and are rare examples
of compounds in which a metal center is involved in two agostic
M‚‚‚H-Si interactions.16-19
Acknowledgment. We thank the National Science Foundation
(Grants CHE 00-76061 and CHE 04-20768) for support of this
work. X-ray diffraction data were collected by Dr. Scott Wilson
and Ms. Teresa Prussak-Wieckowska at the Materials Chemistry
Laboratory of the University of Illinois. NMR spectra were obtained
in the Varian Oxford Instrument Center for Excellence at the
University of Illinois. Funding for this instrumentation was provided
in part from the W. M. Keck Foundation, the National Institutes of
Health (PHS 1 S10 RR10444-01), and the National Science
Foundation (NSF CHE 96-10502).
(17) Fryzuk, M. D.; Haddad, T. S.; Berg, D. J. Coord. Chem. ReV. 1990, 99,
137-212.
(18) (a) Luo, X.-L.; Crabtree, R. H. J. Am. Chem. Soc. 1989, 111, 2527-
2535. (b) Takao, T.; Yoshida, S.; Suzuki, H. Organometallics 1995, 14,
3855-3868. (c) Delpech, F.; Sabo-Etienne, S.; Daran, J. C.; Chaudret,
B.; Hussein, K.; Marsden, C. J.; Barthelat, J. C. J. Am. Chem. Soc. 1999,
121, 6668-6682. (d) Eppinger, J.; Spiegler, M.; Hieringer, W.; Herrmann,
W. A.; Anwander, R. J. Am. Chem. Soc. 2000, 122, 3080-3096. (e)
Atheaux, I.; Delpech, F.; Donnadieu, B.; Sabo-Etienne, S.; Chaudret, B.;
Hussein, K.; Barthelat, J. C.; Braun, T.; Duckett, S. B.; Perutz, R. N.
Organometallics 2002, 21, 5347-5357. (f) Ayed, T.; Barthelat, J. C.;
Tangour, B.; Pradere, C.; Donnadieu, B.; Grellier, M.; Sabo-Etienne, S.
Organometallics 2005, 24, 3824-3826.
Supporting Information Available: Details of the characterization
of 1 and 2; X-ray crystallographic files for 2 in CIF format. This
References
(19) For recent theoretical studies of M‚‚‚H-Si agostic interactions, see: (a)
Fan, M.-F.; Lin, Z. Organometallics 1999, 18, 286-289. (b) Hieringer,
W.; Eppinger, J.; Anwander, R.; Herrmann, W. A. J. Am. Chem. Soc.
2000, 122, 11983-11994. (c) Choi, S. H.; Lin, Z. Y. J. Organomet. Chem.
2000, 608, 42-48. (d) Paterson, M. J.; Chatterton, N. P.; McGrady, G. S.
New. J. Chem. 2004, 28, 1434-1436. (e) Clot, E.; Eisenstein, O. Struct.
Bonding (Berlin) 2004, 113, 1-36.
(1) (a) Hayase, S. Prog. Polym. Sci. 2003, 28, 359-381. (b) Jamshidi, H.;
Rahimi, A. Phosphorus, Sulfur Silicon Relat. Elem. 2006, 181, 2565-
2576.
(2) (a) Aitken, C. T.; Harrod, J. F.; Samuel, E. J. Am. Chem. Soc. 1986, 108,
4059-4066. (b) Aitken, C.; Harrod, J. F.; Gill, U. S. Can. J. Chem. 1987,
65, 1804-1809.
(3) (a) Tilley, T. D. Acc. Chem. Res. 1993, 26, 22-29. (b) Gauvin, R.; Harrod,
J. F.; Woo, H. G. AdV. Organomet. Chem. 1998, 42, 363-405. (c) Corey,
JA067503A
9
J. AM. CHEM. SOC. VOL. 129, NO. 7, 2007 1861