4
Tetrahedron
The reaction of 1k afforded not only iodide 4k (63%) but also
without any significant loss of activities for the synthesis of
chloride 2a, bromide 3a, and iodide 4a.
2-benzyl-2-propanol (32%) (entry 8). Addition of hydrogen
iodide42 proceeded faster than those of hydrogen chloride and
hydrogen bromide.
In conclusion, we devised the silica gel-mediated
hydrohalogenation of alkenes using hydrohalogenic acids.43
Widely available hydrohalogenic acids can be employed.
Furthermore, the procedure is environmentary benign since the
reactions can be conducted without harmful organic solvents.
Silica gel could be recycled without loss of activities. Silica gel
acts as a dehydration agent of hydrohalogenic acids to produce
hydrogen halides as well as an efficient dispersant to prevent
viscous properties under neat conditions.
Table 6
Silica-gel mediated hydriodination of alkenesa
Entry
1
Conv.(%)b
Substrate
Product
Time (h)
Yield (%)c
93
8
100
1a
4a
I
References and notes
2
3
4
24
100
96
4b
I
1b
1. Hassner, A.; Fibiger, R. F. Synthesis 1984, 960-960.
2. Shields, T. C. Can. J. Chem. 1971, 49, 1142-1146.
3. Schevenels, F. T.; Shen, M.; Snyder, S. A. J. Am. Chem. Soc.
2017, 139, 6329-6337.
4. Gaspar, B.; Carreira, E. M. Angew. Chem. Int. Ed. 2008, 47,
5758-5760.
24
48
87
99
100
100
4f
1f
I
4g
I
1g
5. Galli, M.; Fletcher, C. J.; Del Pozo, M.; Goldup, S. M. Org.
biomol. chem. 2016, 14, 5622-5626.
6. Boudjouk, P.; Kim, B.-K.; Han, B.-H. Synth. Commun. 1996, 26,
3479-3484.
7. Matsubara, H.; Tsukida, M.; Ishihara, D.; Kuniyoshi, K.; Ryu, I.
Synlett 2010, 2014-2018.
8. Kropp, P. J.; Daus, K. A.; Crawford, S. D.; Tubergen, M. W.;
Kepler, K. D.; Craig, S. L.; Wilson, V. P. J. Am. Chem. Soc.
1990, 112, 7433-7434.
9. Kropp, P. J.; Daus, K. A.; Tubergen, M. W.; Kepler, K. D.;
Wilson, V. P.; Craig, S. L.; Baillargeon, M. M.; Breton, G. W. J.
Am. Chem. Soc. 1993, 115, 3071-3079.
10. Delaude, L.; Laszlo, P. Tetrahedron Lett. 1991, 32, 3705-3708.
11. Sanseverino, A. M.; Mattos, M. J. Braz. Chem. Soc. 2001, 12,
685-687.
12. Yadav, V. K.; Babu, K. G. Eur. J. Org. Chem. 2005, 452-456.
13. Landini, D.; Rolla, F. J. Org. Chem. 1980, 45, 3527-3529.
14. Nishio, Y.; Mifune, R.; Sato, T.; Ishikawa, S.-i.; Matsubara, H.
Tetrahedron Lett. 2017, 58, 1190-1193.
15. Liang, S.; Hammond, G. B.; Xu, B. Green Chem. 2018, 20, 680-
684.
I
5
6
7
100
100
89
24
24
24
1h
4h
d
-
I
1i
4i
I
d
100
100
-
1j
4j
I
H
Me
Me
8
9
0.75
4
63e,f
91
Ph CH2
C
Me
C
C
Ph
4k
Me
1k
I
100
1l
Ph
4l
Ph
a Alkene 1 (2.0 mmol), 55% hydriodic acid (5.0 mmol), silica gel 60 (63-200
μm, spherical, Nacalai, 5.0 g), room temp.
b Determined by 1H NMR spectroscopy based on alkene 1.
c Isolated yields.
d Complex mixture was obtained.
16. Serra-Muns, A.; Guérinot, A.; Reymond, S.; Cossy, J. Chem.
Commun. 2010, 46, 4178-4180.
e Yield was determined by 1H NMR with CH2Cl2 as the internal standard.
f 2-Benzyl-2-propanol was obtained in 36% yield.
17. Rohand, T.; Savary, J.; Markó, I. E. Monatsh. Chem. 2018, 149,
1-8.
18. Posner, G. H. Angew. Chem. Int. Ed. Eng. 1978, 17, 487-496.
19. Usyatinsky, A. Y.; Khmelnitsky, Y. L. Tetrahedron Lett. 2000,
41, 5031-5034.
Table 7
Recycle experiments for the hydrohalogenation of 1a
Yield (%)a
Entry
1st
86
86
89
2nd
84
3rd
84
86
86
4th
89
89
90
5th
90
85
87
20. Ballini, R.; Bosica, G.; Parrini, M. Tetrahedron Lett. 1998, 39,
7963-7964.
21. Seki, T.; Onaka, M. Chem. Lett. 2005, 34, 262-263.
22. Onitsuka, S.; Jin, Y. Z.; Shaikh, A. C.; Furuno, H.; Inanaga, J.
Molecules 2012, 17, 11469-11483.
23. Yaseen, M.; Ali, M.; NajeebUllah, M.; Ali Munawar, M.;
Khokhar, I. J. Heterocycl. Chem. 2009, 46, 251-255.
24. Kidwai, M.; Mothsra, P. Ind. J. Chem. 2006, 45B, 2330-2336.
25. Pore, D.; Desai, U. V.; Thopate, T.; Wadgaonkar, P. Arkivoc
2006, 12, 75-80.
1b
2c
3d
88
89
a Isolated yields.
b Alkene 1a (2.0 mmol), 35% hydrochloric acid (8.0 mmol), silica gel 60 (63-
200 μm, spherical, Nacalai, 5.0 g), room temp, 24 h.
c Alkene 1a (2.0 mmol), 47% hydrobromic acid (8.0 mmol), silica gel 60 (63-
200 μm, spherical, Nacalai, 5.0 g), room temp, 24 h.
26. Ahmed, N.; van Lier, J. E. Tetrahedron Lett. 2006, 47, 2725-
2729.
d Alkene 1a (2.0 mmol), 55% hydriodic acid (5.0 mmol), silica gel 60 (63-200
μm, spherical, Nacalai, 5.0 g), room temp, 8 h.
27. Bosica, G.; Abdilla, R. Molecules 2016, 21, 815.
28. Kabalka, G. W.; Zhou, L.-L.; Wang, L.; Pagni, R. M.
Tetrahedron 2006, 62, 857-867.
29. Saikia, M.; Kakati, D.; Joseph, M. S.; Sarma, J. C. Lett. Org.
Chem. 2009, 6, 654-658.
The procedure was scaled up 20-fold for the syntheses of
chloride 2a, bromide 3a, and iodide 4a. Hydrohalogenation of 1a
proceeded successfully to give 2a, 3a, and 4a in 89, 88, and 93%
yields, respectively.
30. Jin, Y. Z.; Yasuda, N.; Furuno, H.; Inanaga, J. Tetrahedron Lett.
2003, 44, 8765-8768.
31. Jin, Y. Z.; Yasuda, N.; Inanaga, J. Green Chem. 2002, 4, 498-
500.
Recycle experiments for the addition of hydrogen halides to
1a are shown in Table 7. Silica gel could be recycled five times