a lifetime of t ¼ 2.6 ps, somewhat longer than the value of t1
found in the present work. In their case, the molecules were
concluded to experience a fast internal conversion to the S1
state within o0.5 ps. The differences between S2 vs. S1 excita-
tion thus reflect the different starting positions of the dynamics
of the wavepackets on the S1 PES.
References
1
2
T. Ikeda and O. Tsutsumi, Science, 1995, 268, 1873.
Z. F. Liu, K. Hashimoto and A. Fujishima, Nature, 1990, 347,
658.
3
4
I. Willner and S. Rubin, Angew. Chem., Int. Ed., 1996, 35, 367.
T. Hugel, N. B. Holland, A. Cattani, L. Moroder, M. Seitz and
H. E. Gaub, Science, 2002, 296, 1103.
However, recent femtosecond fluorescence depolarization
measurements of trans-AB excited to the S1 state in solvents
of different viscosity by Chang et al. showed that the dynamics
of the prototypical parent AB is considerably more complex.21
They observed that the fluorescence anisotropy of trans-AB in
hexane decays with the same time constant as the slow
fluorescence (t2). In contrast, the fluorescence anisotropy in
ethylene glycol did not show a discernable decay. They con-
cluded that both the rotation and the inversion routes are
important, but that their relative contributions depend on the
conditions. In low viscosity solvents (hexane) they assumed
isomerization predominantly via out-of-plane CNNC torsional
motion and the CI at the twisted configuration predicted by
theoretical work,17–20 while the concerted in-plane inversion
pathway17 was preferred in high-viscosity solvents (ethylene
glycol). Quoted differences between the decay times and photo-
isomerization quantum yields of trans- vs. cis-AB and S2 vs. S1
excitation thus reflect different starting points of the excited
wavepackets on the S1 PES, different relative contributions of
the rotation and inversion reaction pathways, and different
branchings of the wavepackets into the cis or trans directions at
the S1–S0 CIs.
5
N. B. Holland, T. Hugel, G. Neuert, A. Cattani-Scholz, C.
Renner, D. Oesterhelt, L. Moroder, M. Seitz and H. E. Gaub,
Macromolecules, 2003, 36, 2015.
L. Ulysse, J. Cubillos and J. Chmielewski, J. Am. Chem. Soc.,
1995, 117, 8466.
J. R. Kumita, O. S. Smart and G. A. Woolley, Proc. Natl. Acad.
Sci. USA, 2000, 97, 3803.
S. Sporlein, H. Carstens, H. Satzger, C. Renner, R. Behrendt, L.
Moroder, P. Tavan, W. Zinth and J. Wachtveitl, Proc. Natl. Acad.
Sci. USA, 2002, 99, 7998.
6
7
8
9
10 H. Rau, J. Photochem., 1984, 26, 221.
11 T. Nagele, R. Hoche, W. Zinth and J. Wachtveitl, Chem. Phys.
Lett., 1997, 272, 489.
12 I. K. Lednev, T.-Q. Ye, P. Matousek, M. Towrie, P. Foggi, F. V.
R. Neuwahl, S. Umapathy, R. E. Hester and J. N. Moore, Chem.
Phys. Lett., 1998, 290, 68.
13 I. K. Lednev, T.-Q. Ye, L. C. Abbott, R. E. Hester and J. N.
Moore, J. Phys. Chem. A, 1998, 102, 9161.
14 Y.-C. Lu, C.-W. Chang and E. W.-G. Diau, J. Chin. Chem. Soc.,
2002, 49, 693.
15 H. Satzger, S. Sporlein, C. Root, J. Wachtveitl, W. Zinth and
P. Gilch, Chem. Phys. Lett., 2003, 372, 216.
16 T. Pancur, PhD thesis, Christian-Albrechts-Universitat zu Kiel,
2004.
H. Rau and E. Luddecke, J. Am. Chem. Soc., 1982, 104, 1616.
17 E. W.-G. Diau, J. Phys. Chem. A, 2004, 108, 950.
18 A. Cembran, F. Bernardi, M. Garavelli, L. Gagliardi and G.
Orlandi, J. Am. Chem. Soc., 2004, 126, 3234.
19 T. Ishikawa, T. Noro and T. Shoda, J. Chem. Phys., 2001, 115,
7503.
20 C. Ciminelli, G. Granucci and M. Perisco, Chem. Eur. J., 2004,
2327.
21 C.-W. Chang, Y.-C. Lu, T.-T. Wang and E. W.-G. Diau, J. Am.
Chem. Soc., 2004, 126, 10109.
22 T. Wilhelm, J. Piel and E. Riedle, Opt. Lett., 1997, 22, 1494.
23 S. Shinkai, T. Nakaji, Y. Nishida, T. Ogawa and O. Manabe,
J. Am. Chem. Soc., 1980, 102, 5860.
24 H.-H. Perkampus, UV-Vis Atlas of Organic Compounds, VCH,
Weinheim, 2nd edn., 1992, vol. 1.
25 W. H. Press, B. P. Flannery, S. A. Teukolsky and W. T. Vetterling,
Numerical Recipes in C, Cambridge University Press, Cambridge,
1988.
26 T. Schultz, J. Quenneville, B. Levine, A. Toniolo, T. J. Martinez,
S. Lochbrunner, M. Schmitt, J. P. Shaffer, M. Z. Zgierski and
A. Stolow, J. Am. Chem. Soc., 2003, 125, 8098.
27 H. Satzger, C. Root and M. Braun, J. Phys. Chem. A, 2004, 108,
6265.
5. Conclusions
In conclusion, we have studied the temporal fluorescence decay
profiles of a rotation-restricted trans-AB derivative capped by
a crown ether (1), a chemically similar open derivative (2), and
the unsubstituted parent trans-AB (3) following excitation to
the S1 (np*) state. The observed biexponential fluorescence
profiles for 1 and 2 were almost indistinguishable within
experimental error, suggesting strongly that trans–cis isomeri-
zation of 1 and 2 after S1 excitation is governed by the same
mechanism. The results support the idea that the internal
conversion and isomerization of the molecules proceeds
through a conical intersection between the S1 and S0 states.
The very fast first fluorescence decay time is attributed to
the initial direct motion of the excited wavepacket on the
S1 PES away from the Franck–Condon region. The slower
second fluorescence decay time is assigned to the transi-
tion from to the S0 to the S1 state by a slower, ‘‘diffusive’’
motion. The isomerization of the capped AB 1 and the open
derivative 2 is concluded to proceed via a planar (and probably
concerted) ‘‘inversion’’ at the N atom(s) or a type of ‘‘hula-
twist’’ motion of the N atom(s) and phenyl ring(s). Further
theoretical studies are needed to fully characterize the possible
inversion routes.
28 P. Hamm, S. Ohline and W. Zinth, J. Chem. Phys., 1997, 106, 519.
29 J. Schroeder, T. Steinel and J. Troe, J. Phys. Chem. A, 2002, 106,
5510.
30 D. C. Todd, J. M. Jean, S. J. Rosenthal, A. J. Ruggiero, D. Yang
and G. R. Fleming, J. Chem. Phys., 1990, 93, 8658.
31 A. Abrash, S. Repinec and R. M. Hochstrasser, J. Chem. Phys.,
1990, 93, 1041.
32 L. Nikowa, D. Schwarzer, J. Troe and J. Schroeder, J. Chem.
Phys., 1992, 97, 4827.
33 K. Ishii, S. Takeuchi and T. Tahara, Chem. Phys. Lett., 2004, 398,
400.
Acknowledgements
34 W. Fuß, C. Kosmidis, W. E. Schmid and S. A. Trushin, Chem.
Phys. Lett., 2004, 385, 423.
35 H. Rau and I. Waldner, Phys. Chem. Chem. Phys., 2002, 4, 1776.
36 T. Fujino and T. Tahara, J. Phys. Chem. A, 2000, 104, 4203.
37 T. Fujino, S. Y. Arzhantsev and T. Tahara, J. Phys. Chem. A,
2001, 105, 8123.
The financial support of this work by the Deutsche For-
schungsgemeinschaft and the Fonds der Chemischen Industrie
is gratefully acknowledged. A.K. thanks the Fonds der Che-
mischen Industrie for a Liebig stipend, T.P. thanks the Fonds
der Chemischen Industrie for a PhD fellowship.
T h i s j o u r n a l i s & T h e O w n e r S o c i e t i e s 2 0 0 5
P h y s . C h e m . C h e m . P h y s . , 2 0 0 5 , 7 , 1 9 8 5 – 1 9 8 9
1989