B. G. Roy et al. / Tetrahedron Letters 48 (2007) 1563–1566
1565
571–623; (b) Agrofoglio, L.; Suhas, E.; Farese, A.;
Condom, R.; Challand, S. R.; Earl, R. A.; Guedj, R.
Tetrahedron 1994, 50, 10611–10670; (c) Crimmins, M. T.
Tetrahedron 1998, 54, 9229–9272; (d) Huryn, D.; Okabe,
M. Chem. Rev. 1992, 92, 1745–1768; (e) Ferrero, M.;
Gotor, V. Chem. Rev. 2000, 100, 4319–4347.
dilute H2SO4, diol cleavage with NaIO4, NaBH4 reduc-
tion of the resulting aldehyde, and the subsequent acety-
lation of the diol (5-hydroxymethyl-cyclopent-2-enol)
25
yielded the desired diacetate 7, ½aꢁD ꢀ174.4 (c 0.31,
25
CHCl3) [lit.2f ½aꢁD ꢀ178.0 (c 0.45, CH2Cl2)]. Palladium-
catalyzed coupling of 7 with 2-amino-6-chloropurine in
the presence of tetrakis(triphenylphosphine)palla-
dium(0) and sodium hydride in DMSO–THF (1:1) at
room temperature produced purine carbanucleoside 11,
2. Few syntheses of carbovir: (a) Berranger, T.; Langois, Y.
Tetrahedron Lett. 1995, 36, 5523–5526; (b) Jung, M. E.;
Rhee, H. J. Org. Chem. 1994, 59, 4719–4720; (c) Evans, C.
T.; Robert, S. M.; Shoberu, K. A.; Sutherland, A. G. J.
Chem. Soc., Perkin Trans. 1 1992, 589–592; (d) Trost, B.
M.; Leping, L.; Guile, S. D. J. Am. Chem. Soc. 1992, 114,
8745–8747; (e) Hodgson, D. M.; Witherington, J.; Molo-
ney, B. A. J. Chem. Soc., Perkin Trans. 1 1994, 3373–3378;
(f) Crimmins, M. T.; King, B. W. J. Org. Chem. 1996, 61,
4192–4193; (g) Hildebrand, S.; Troxler, T.; Scheffold, R.
Helv. Chim. Acta 1994, 77, 1236–1240; (h) Diaz, M.;
Ibarzo, J.; Jimenez, J. M.; Ortuno, R. M. Tetrahedron:
Asymmetry 1994, 5, 129–140.
3. Daluge, S. M.; Good, S. S.; Faletto, M. B.; Miller, W. H.;
St. Clair, M. H.; Boone, L. R.; Tisdale, M.; Parry, N. R.;
Reardon, J. E.; Dornsife, R. E.; Averette, D. R.; Krenit-
sky, T. A. Antimicrob. Agents Chemother. 1997, 41, 1082–
1093.
4. (a) Tanaka, M.; Norimine, Y.; Fujita, T.; Suemune, H.;
Sakai, K. J. Org. Chem. 1996, 61, 6952–6957; (b) Katagiri,
N.; Nomura, M.; Sato, H.; Kaneko, C.; Yusa, K.; Tsuruo,
T. J. Med. Chem. 1992, 35, 1882–1886.
25
25
½aꢁD ꢀ85.6 (c 0.18, CHCl3) [lit.2f ½aꢁD ꢀ88.6 (c 0.43,
CH2Cl2)]. Finally, the chlorine in 11 was hydrolyzed with
25
aqueous sodium hydroxide to furnish carbovir 1, ½aꢁD
20
ꢀ66.6 (c 0.22, MeOH) [lit.14 ½aꢁD ꢀ68.0 (c 1.0, MeOH)].
The trans relationship between H-2 and H-3 of 5 was
deduced from the appearance of the H-2 signal as a
doublet at d 4.52 (J = 3.6 Hz) in the 1H NMR spectrum;
this signal is observed as a triplet (J ꢂ 3.8 Hz) in the case
of cis-isomers. The appearance of two olefinic methine
proton signals (at d 5.70–5.89) and carbon signals (at d
133.5, 135.7) in addition to other requisite signals in
the NMR spectrum of 5 confirmed its structure. The
success of the RCM reaction on 5 was evident from
the location of two multiplets (d 5.83–5.85 and 5.91–
1
5.93) for two olefinic protons in the H NMR spectrum
of 6. The 13C NMR spectrum as well as the mass spec-
trum of 6 are in agreement with the assigned structure.
5. Jenkins, G. N.; Turner, N. J. Chem. Soc. Rev. 1995, 24,
169–176.
1
Compounds 7, 11 and 1 showed virtually identical H
6. (a) Banerjee, S.; Ghosh, S.; Sinha, S.; Ghosh, S. J. Org.
Chem. 2005, 70, 4199–4202; (b) Nayek, A.; Banerjee, A.;
Sinha, S.; Ghosh, S. Tetrahedron Lett. 2004, 45, 6457–
6460; (c) Gurjar, M. K.; Maheshwar, K. J. Org. Chem.
2001, 66, 7552–7554; (d) Sahabuddin, Sk.; Roy, A.; Drew,
M. G. B.; Roy, B. G.; Achari, B.; Mandal, S. B. J. Org.
Chem. 2006, 71, 5980–5992.
7. Park, K. H.; Rapoport, H. J. Org. Chem. 1994, 59, 394–
399.
8. Taylor, S. J. C.; Sutherland, A. G.; Lee, C.; Wisdom, R.;
Thomas, S.; Roberts, S. M.; Evans, C. J. Chem. Soc.,
Chem. Comm. 1990, 1120–1121.
and 13C NMR, and also MS, with those reported in
the literature.
In conclusion, the convergent approach to the carbo-
cyclic nucleoside carbovir starting from a D-glucose-
derived precursor described here is very simple and
efficient. The strategy deals with judicious introduction
of olefin moieties at appropriate positions to obtain a
1,6-diene, which is subjected to a ring closing metathesis
reaction to yield the desired enantiomerically pure cyclo-
pentene derivative required for nucleosidation. The
other enantiomer may be obtainable from the other
1,6-diene derived via inclusion of an olefin moiety at
C-1 of an appropriate derivative generated from the
same precursor, followed by ring closure and nucleosi-
dation. The results could be extended to other systems,
utilizing different substitution patterns on different
carbohydrate backbones. These carbanucleosides could
then be screened as potential inhibitors of HIV.
9. Roy, B. G.; Maity, J. K.; Drew, M. G. B.; Achari, B.;
Mandal, S. B. Tetrahedron Lett. 2006, 47, 8821–8825.
10. Iacono, S.; Rasmussen, J. R. Org. Synth. Coll. Vol. 7 1990,
139–142.
11. Preparation of 10: To a solution of 1,2:5,6-di-O-isopro-
pylidene-a-D-glucofuranose (500 mg, 1.9 mmol) in toluene
(26 mL) was added Ph3P (2.8 mmol) and imidazole
(2.8 mmol) and the mixture was heated. When reflux
started, iodine (2.3 mmol) was added and the refluxing was
continued for 2 h. The mixture was cooled; the solution
was washed successively with 30% Na2S2O3 solution
(20 mL) and water (3 · 10 mL), dried (Na2SO4), and
evaporated to a crude residue, which was purified by
silica gel column chromatography (petroleum ether:ethyl
acetate = 85:15) to furnish 10 (325 mg, 45%). ½aꢁ2D5 +14.5 (c
0.78, CHCl3); 1H NMR (CDCl3, 300 MHz): d 1.38 (s, 6H),
1.50 (s, 3H), 1.56 (s, 3H), 3.77 (dd, J = 4.5, 10.0 Hz, 1H),
4.07–4.16 (m, 2H), 4.24–4.34 (m, 2H), 4.61 (t-like,
J = 4.0 Hz, 1H), 5.83 (d, J = 3.6 Hz, 1H); FABMS, m/z:
371 (M+H)+. Anal. Calcd for C12H19IO5: C, 38.93; H,
5.17. Found: C, 38.66; H, 5.03.
Acknowledgements
The work has been supported by a grant (to S.B.M.)
from the Department of Science and Technology (Govt.
of India). The authors gratefully acknowledge the Coun-
cil of Scientific and Industrial Research (CSIR) for pro-
viding Research Fellowships (to B.G.R. and P.K.J.) and
Emeritus Scientist Scheme (to B.A.).
25
12. Data for 4a: ½aꢁD +15.6 (c 0.45, CHCl3); 1H NMR
(CDCl3, 300 MHz): d 1.30 (s, 3H), 1.35 (s, 3H), 1.42 (s,
3H), 1.52 (s, 3H), 1.87–1.92 (m, 1H), 2.34–2.47 (m, 2H),
3.79 (dd, J = 6.3, 9.7 Hz, 1H), 3.39–4.14 (m, 3H), 4.63 (t-
like, J = 3.8 Hz, 1H), 5.03–5.17 (m, 2H), 5.73 (d,
J = 3.4 Hz, 1H), 5.86–5.92 (m, 1H); 13C NMR (CDCl3,
References and notes
1. For recent reviews on the synthesis of carbanucleosides:
(a) Borthwick, A. D.; Biggadike, K. Tetrahedron 1992, 48,