1544
M. Honma, M. Nakada / Tetrahedron Letters 48 (2007) 1541–1544
2. Ueda, J.; Tezuka, Y.; Banskota, A. H.; Tran, Q. L.; Tran,
9. For synthetic studies on ouabain, see: (a) Hynes, J., Jr.;
Overman, L. E.; Nasser, T.; Rucker, P. V. Tetrahedron
Lett. 1998, 39, 4647–4650; (b) Larry, E.; Overman, L. E.;
Rucker, P. V. Tetrahedron Lett. 1998, 39, 4643–4646;
(c) Overman, L. E.; Rucker, P. V. Heterocycles 2000, 52,
1297–1314; (d) Jung, M. E.; Davidov, P. Angew. Chem.,
Int. Ed. 2002, 41, 4125–4128; (e) Chapdelaine, D.;
Belzile, J.; Deslongchamps, P. J. Org. Chem. 2002, 67,
5669–5672; (f) Jung, M. E.; Piizzi, G. Org. Lett. 2003, 5,
137–140; (g) Jung, M. E.; Piizzi, G. J. Org. Chem. 2003, 68,
2572–2582; (h) Plano, M. F.; Labadie, G. R.; Sierra, M. G.;
Cravero, R. M. Tetrahedron Lett. 2006, 47, 7447–7449.
10. (a) Wiesner, K.; Tsai, T. Y. R.; Jin, H. Helv. Chim. Acta
1985, 68, 300–314; (b) Wiesner, K.; Tsai, T. Y. R. Pure
Appl. Chem. 1986, 58, 799–810; (c) McDonald, F. E.;
Reddy, K. S.; Diaz, Y. J. Am. Chem. Soc. 2000, 122, 4304–
4309; (d) McDonald, F. E.; Reddy, K. S. Angew. Chem.,
Int. Ed. 2001, 40, 3653–3655; (e) McDonald, F. E.; Wu, M.
Org. Lett. 2002, 4, 3979–3981; (f) Langenhan, J. M.;
Peters, N. R.; Guzei, I. A.; Hoffmann, F. M.; Thorson, J.
S. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 12305–12310;
(g) Zhou, M.; O’Doherty, G. A. Org. Lett. 2006, 8, 4339–
4342.
Q. K.; Saiki, I.; Kadota, S. J. Nat. Prod. 2003, 66, 1427–
1433.
3. Laphookhieo, S.; Cheenpracha, S.; Karalai, C.; Chant-
rapromma, S.; Rat-a-pa, Y.; Ponglimanont, C.; Chant-
rapromma, K. Phytochemistry 2004, 65, 507–510.
4. Kamano, Y.; Kotake, A.; Hashima, H.; Inoue, M.;
Morita, H.; Takeya, K.; Itokawa, H.; Nandachi, N.;
Segawa, T.; Yukita, A.; Saitou, K.; Katsuyama, M.; Pettit,
G. R. Bioorg. Med. Chem. 1998, 6, 1103–1115.
5. (a) Danieli, N.; Mazur, Y.; Sondheimer, F. J. Am. Chem.
Soc. 1962, 84, 875–876; (b) Sondheimer, F. Chem. Br.
1965, 1, 454–464; (c) Danieli, N.; Mazur, Y.; Sondheimer,
F. Tetrahedron 1966, 22, 3189–3193; (d) Bach, G.;
Capitaine, J.; Engel, C. R. Can. J. Chem. 1968, 46, 733–
749, and references cited therein; (e) Fritsch, W.; Haede,
W.; Radscheit, K.; Ruschig, H. Liebigs Ann. Chem. 1969,
721, 168–185; (f) Pettit, G. R.; Houghton, L. E.; Knight, I.
C.; Bruschweiler, F. J. Org. Chem. 1970, 35, 2895–2898;
(g) Valcavi, U.; Innocenti, S. El. Farmaco Ed. Sci. 1974,
29, 194–203; (h) Fritsch, W.; Haede, W.; Radscheit, K.;
Stache, U.; Ruschig, H. Liebigs Ann. Chem. 1974, 621–
629; (i) Yoshii, E.; Koizumi, T.; Ikeshima, H.; Uzaki, K.;
Hayashi, I. Chem. Pharm. Bull. 1975, 23, 2496–2506; (j)
Lenz, G. R.; Schulz, J. A. J. Org. Chem. 1978, 43, 2334–
2339; (k) Donovan, S. F.; Avery, M. A.; McMurry, J. E.
Tetrahedron Lett. 1979, 3287–3290; (l) Kocovsky, P.
Collect. Czech. Chem. Commun. 1980, 45, 2998–3007;
(m) Nickisch, K.; Kose, W.; Bohlmann, F. Chem. Ber.
1980, 113, 2038–2039; (n) Marini-Bettolo, R.; Flecker, P.;
Tsai, T. Y. R.; Wiesner, K. Can. J. Chem. 1981, 59, 1403–
1404; (o) Kocovsky, P.; Cerny, V. Collect. Czech. Com-
mun. 1981, 46, 446–451; (p) Welzel, P.; Stein, H.; Milkova,
T. Liebigs Ann. Chem. 1982, 2119–2134; (q) Wicha, J.;
Kabat, M. M. J. Chem. Soc., Chem. Commun. 1983, 985–
987; (r) Wicha, J.; Kabat, M. M. J. Chem. Soc., Perkin
Trans. 1 1985, 1601–1605; (s) Wiesner, K.; Tsai, T. Y. R.
Pure Appl. Chem. 1986, 58, 799–810; (t) Kutney, J. P.;
Piotrowska, K.; Somerville, J.; Huang, S. P.; Rettig, S. J.
Can. J. Chem. 1989, 67, 580–589; (u) Groszek, G.; Kurek-
Tyrlik, A.; Wicha, J. Tetrahedron 1989, 45, 2223–2226; (v)
Kocovsky, P.; Stieborova, I. Tetrahedron Lett. 1989, 30,
4295–4298; For reviews of partial syntheses, see: (w)
Hanson, J. R. Nat. Prod. Rep. 1993, 10, 313–325.
6. Stork, G.; West, F.; Lee, Y. H.; Isaacs, R. C.; Manabe, S.
J. Am. Chem. Soc. 1996, 118, 10660–10661.
11. Yield of 5 was improved to 91% from 78% (Ref. 11a). (a)
Honma, M.; Sawada, T.; Fujisawa, Y.; Utsugi, M.;
Watanabe, H.; Umino, A.; Matsumura, T.; Hagihara,
T.; Takano, M.; Nakada, M. J. Am. Chem. Soc. 2003, 125,
2860–2861; (b) Honma, M.; Nakada, M. Tetrahedron Lett.
2003, 44, 9007–9011.
12. Brooks, D. W.; Mazdiyasni, H.; Grothaus, P. G. J. Org.
Chem. 1987, 52, 3223–3232.
13. Yield of 10 from 3 by the previous method using sodium
amalgam10a was 45%.
14. For example, the reduction of 10 with NaBH4 afforded the
undesired isomer preferentially (86%, dr = 1/3).
15. Ochiai, M.; Ito, T.; Takahashi, H.; Nakanishi, A.;
Toyonari, M.; Sueda, T.; Goto, S.; Shiro, M. J. Am.
Chem. Soc. 1996, 118, 7716–7730.
16. Barton, D. H. R.; Bashiardes, G.; Fourrey, J. L. Tetra-
hedron 1988, 44, 147–162.
17. Commercially available.
18. Crabtree, R. H.; Morris, G. E. J. Organomet. Chem. 1977,
135, 395–403.
19. Lipshutz, B. H.; Koerner, M.; Parker, D. A. Tetrahedron
Lett. 1987, 28, 945–948.
20. Rue1, R.; Deslongchamps, P. Tetrahedron Lett. 1990, 31,
3961–3964.
7. Arnaud, M. C.R. Acad. 1888, 107, 1011.
8. Bigelow, N. M.; Jacobs, W. A. J. Biol. Chem. 1932, 96,
647–658.
21. Kernan, M. R.; Faulkner, D. J. J. Org. Chem. 1988, 53,
2773–2776.