crude product was purified by column chromatography with silica
gel using hexane as the eluent to give complex 6c as a red solid
(0.19 g, 35%). ESI-MS: m/z: 561.8 [M + H]+; IR m(CO): 2072, 2031,
1994 cm−1; 1H NMR (CDCl3) d 6.88 (s, 1H), 6.62 (s, 1H), 3.82 (s,
2H), 3.32(s, 4H) ppm; 13C NMR (CDCl3) d 207.8, 141.0, 129.8,
127.2, 77.2, 56.7, 52.1 ppm; Anal. Calcd for C13H8BrFe2NO6S3:
C 27.78, H, 1.43, N 2.49. Found: C, 28.00; H, 1.59; N, 2.60%.
The orange solid N-protonated product of 6c from 6c (100 mg,
0.18 mmol) was obtained in a similar manner to that of 6b (yield:
References
1 R. Cammack, Nature, 1999, 297, 214–215.
2 D. J. Evans and C. J. Pickett, Chem. Soc. Rev., 2003, 32, 268–275.
3 J. W. Peters, W. N. Lanzilotta, B. J. Lemon and L. C. Seefeldt, Science,
1998, 282, 1853–1858.
4 Y. Nicolet, C. Piras, P. Legrand, C. E. Hatchikian and J. C. Fontecilla
Camps, Structure, 1999, 7, 13–23.
5 (a) R. H. Holm, P. J. Kennepohl and E. I. Solomon, Chem. Rev.,
1996, 96, 2239–2314; (b) J. N. Butt, M. Filipiak and W. R. Hagen,
Eur. J. Biochem., 1997, 245, 116–122.
6 (a) M. Schmidt, S. M. Contakes and T. R. Rauchfuss, J. Am. Chem. Soc.,
1999, 121, 9736–9737; (b) E. J. Lyon, I. P. Georgakaki, J. H. Reibenspies
and M. Y. Darensbourg, Angew. Chem., Int. Ed., 1999, 38, 3178–3180;
(c) A. Le Cloirec, S. P. Best, S. Borg, S. C. Davies, D. J. Evans, D. L.
Hughes and C. J. Pickett, Chem. Commun., 1999, 2285–2286.
7 F. Gloaguen, J. D. Lawrence, M. Schmidt, S. R. Wilson and T. B.
Rauchfuss, J. Am. Chem. Soc., 2001, 123, 12518–12527.
1
65 mg, 65%). IR m(CO): 2086, 2046, 2009, 2002, 1987 cm−1. H
NMR (CD3CN): d 7.16 (d, J = 3.6 Hz, 1H), 7.09 (d, J = 3.6 Hz,
1H), 4.52 (s, 2H), 3.72 (s, 4H) ppm.
Crystallographic parameters of complexes 6a–6c are listed in
Table 3.
8 F. Gloaguen, J. D. Lawrence, T. B. Rauchfuss, M. Bernard and M.-M.
Rohmer, Inorg. Chem., 2002, 41, 6573–6582.
Electrochemical studies of complexes 6a–6c. The acetonitrile
(Aldrich, spectroscopy grade) used for electrochemical measure-
ments was dried with molecular sieves and then freshly distilled
from CaH2 under N2. A solution of 0.1 m n-Bu4NPF6 (Fluka, elec-
trochemical grade) in CH3CN was used as electrolyte, which was
degassed by bubbling with dry CO for 10 min before measurement.
Electrochemical measurements were recorded using a BAS-100W
electrochemical potentiostat at a scan rate of 100 mV s−1. CVs
were obtained in a three-electrode cell under argon. The working
electrode was a glassy carbon disc (diameter 3 mm) successively
polished with 3- and 1-lm diamond pastes and sonicated in ion-
free water for 10 min. The reference electrode was a non-aqueous
Ag/Ag+ electrode (0.01 m AgNO3 in CH3CN) and the auxiliary
electrode was a platinum wire.
9 D. Chong, I. P. Georgakaki, R. Meija-Rodriguez, J. Sanabri Chinchilla,
M. P. Soriaga and M. Y. Darensbourg, Dalton Trans., 2003, 4158–4163.
10 M. Razavet, S. C. Davies, D. L. Hughes, J. E. Barclay, D. J. Evans, S. A.
Fairhurst, X. Liu and C. J. Pickett, Dalton Trans., 2003, 586–595.
˚
11 S. Ott, M. Kritikos, B. Akermark, L. Sun and R. Lomoth, Angew.
Chem., Int. Ed., 2004, 43, 1006–1009.
12 F. Gloaguen, J. D. Lawrence and T. B. Rauchfuss, J. Am. Chem. Soc.,
2001, 9476–9477.
13 R. Meija-Rodriguez, D. Chong, J. H. Reibenspies, M. P. Soriaga and
M. Y. Darensbourg, J. Am. Chem. Soc., 2004, 12004–12014.
14 Y. Nicolet, B. J. Lemon, J. C. Fontecilla-Camps and J. W. Peters, Trends
Biochem. Sci., 2000, 25, 138–143.
15 Y. Nicolet, A. L. de Lacey, X. Verne`de, V. M. Fernandez, E. C.
Hatchikian and J. C. Fontecilla Camps, J. Am. Chem. Soc., 2001, 123,
1596–1601.
16 H. Fan and M. B. Hall, J. Am. Chem. Soc., 2001, 123, 3828–3829.
17 J. D. Lawrence, H. Li, T. B. Rauchfuss, M. Bernard and M.-M. Rohmer,
Angew. Chem., Int. Ed., 2001, 40, 1768–1771.
˚
18 T. Liu, M. Wang, Z. Shi, H. Cui, W. Dong, J. Chen, B. Akermark and
Conclusions
L. Sun, Chem.–Eur. J., 2004, 10, 4474–4479.
˚
19 W. Gao, J. Liu, C. Ma, L. Weng, K. Jin, C. Chen, B. Akermark and L.
In summary, three heterocycle-containing diiron azadithiolate
hexacarbonyl complexes have been synthesized as biomimetic
models for the active site of Fe-only hydrogenases. This study
provides a new addition to Fe–S chemistry and shows the potential
for great structural diversity. The most remarkable feature of this
heterocyclic system is the low reduction potential after addition
of HClO4, −1.09 V vs Fc/Fc+, about the same as that recently
obtained for a related complex32 where two CO ligands have been
replaced by phosphines. This has obviously resulted from the
introduction of a bromine on the thiophene ring. The synthesis
of these complexes would allow future access to six-membered
analogues for evaluation of their redox potentials. Attempts
to reach values even closer to the natural hydrogenases are in
progress.
Sun, Inorg. Chim. Acta, 2006, 359, 1071–1080.
˚
20 F. Wang, M. Wang, X. Liu, K. Jin, W. Dong, G. Li, B. Akermark and
L. Sun, Chem. Commun., 2005, 3221–3223.
21 S. Jiang, J. Liu and L. Sun, Inorg. Chem. Commun., 2006, 9, 290–292.
22 The synthetic procedure is described in detail in the ESI‡.
23 H. Li and T. B. Rauchfuss, J. Am. Chem. Soc., 2002, 124, 726–727.
˚
24 S. Ott, M. Kritikos, B. Akermark and L. Sun, Angew. Chem., Int. Ed.,
2003, 115, 3407–3410.
25 J. D. Lawrence, H. Li and T. B. Rauchfuss, Chem. Commun., 2001,
1482–1483.
26 J. D. Lawrence, H. Li, T. B. Rauchfuss, M. Be´nard and M.-M. Rohmer,
Angew. Chem., Int. Ed., 2001, 113, 1818–1821.
27 (a) C. Tommos and G. Babcock, Biochim. Biophys. Acta, 2000, 1458,
199–219; (b) C. Aubert, M. H. Vos, P. Mathis, A. P. Eker and K. Brettel,
Nature, 2002, 405, 586; (c) F. Rappaport and J. Lavergne, Biochim.
Biophys. Acta, 2001, 1503, 246–259; (d) J. Stubbe, D. G. Nocera, C. S.
Yee and C. Y. Chang, Chem. Rev., 2003, 103, 2167–2202.
˚
28 (a) M. Sjo¨din, S. Styring, B. Akermark, L. Sun and L. Hammarstro¨m,
J. Am. Chem. Soc., 2000, 122, 3932–3936; (b) M. Sjo¨din, S. Styring, B.
˚
Akermark, L. Sun and L. Hammarstro¨m, Philos. Trans. R. Soc. London,
Acknowledgements
Ser. B, 2002, 357, 1471–1479; (c) J. Utas, Dissertation, Stockholm
University, 2006.
We are grateful to the Ministry of Science and Technology of China
and the Chinese National Natural Science Foundation (Grant
No. 20633020) for financial support of this work. We would also
like to thank the Swedish Energy Agency, the Swedish Research
Council and the K & A Wallenberg Foundation for their financial
support. This research was also supported by the Programme of
Introducing Talents of Discipline to Universities.
29 I. Bhugun, D. Lexa and J.-M. Saveant, J. Am. Chem. Soc., 1996, 118,
3982–3983.
30 S Borg, T. Behrsing, S. Best, M. Razavet, X. Liu and C. Pickett, J. Am.
Chem. Soc., 2004, 126, 16988–6999.
˚
31 W. Gao, J. Liu, B. Akermark and L. Sun, Inorg. Chem., 2006, 45, 9169–
9171.
32 L. Schwartz, G. Eilers, L. Eriksson, A. Gogoll, R. Lomoth and S. Ott,
Chem. Commun., 2006, 520–522.
902 | Dalton Trans., 2007, 896–902
This journal is
The Royal Society of Chemistry 2007
©