˚
˚
˚
12 P. A. Williams, J. Cosme, A. Ward, H. C. Angove, D. M. Vinkovic and
H. Jhoti, Nature, 2003, 424, 464–468.
13 G. Kryger, I. Silman and J. L. Sussman, Structure (London), 1999, 7,
297–307.
dimensions: intermolecular translations ( 5 A, 2.5 A, 1.25 A),
rotations ( 180◦, 90◦, 45◦, 22.5◦) and torsions ( 180◦, 90◦, 45◦,
22.5◦). The solubilising R group and piperidine protons did not
move in NMR experiments and were therefore excluded from
calculations. van der Waals clashes were penalised at distances of
14 G. Kryger, I. Silman and J. L. Sussman, J. Physiol. (Paris), 1998, 92,
191–194.
15 D. F. V. Lewis, M. N. Jacobs and M. Dickins, Drug Discovery Today,
2004, 9, 530–537.
16 S. Tsuzuki, K. Honda, T. Uchimaru, M. Mikami and K. Tanabe, J. Am.
Chem. Soc., 2002, 124, 104–112.
˚
˚
less than 2 A for intermolecular clashes and 1 A for intramolecular
clashes for non-hydrogen atoms. The NOE constraint illustrated
in Fig. 17 was imposed by applying a penalty, if the inter-
17 S. Perez-Casas, J. Hernandez-Trujillo and M. Costas, J. Phys. Chem. B,
2003, 107, 4167–4174.
˚
proton separation exceeded 5 A. Each geometry optimisation was
run at least five times. Structure calculations yielding RMSDs
between calculated and experimental Dd values less than 0.17 ppm
were accepted. The optimised structures obtained from repeat
calculations of the complexes shown in Fig. 12 were very similar,
but only the structures with the lowest RMSDs are reported in
this work.
18 M. O. Sinnokrot and C. D. Sherrill, J. Am. Chem. Soc., 2004, 126,
7690–7697.
19 M. O. Sinnokrot and C. D. Sherrill, J. Phys. Chem. A, 2003, 107, 8377–
8379.
20 M. O. Sinnokrot and C. D. Sherrill, J. Phys. Chem. A, 2004, 108, 10200–
10207.
21 A. L. Ringer, M. O. Sinnokrot, R. P. Lively and C. D. Sherrill, Chem.–
Eur. J., 2006, 12, 3821–3828.
22 B. W. Gung and J. C. Amicangelo, J. Org. Chem., 2006, 71, 9261–9270.
23 C. A. Hunter and J. K. M. Sanders, J. Am. Chem. Soc., 1990, 112,
5525–5534.
Synthetic procedures
Detailed synthetic procedures and compound characterisation
data are provided in the ESI.†
24 C. A. Hunter, K. R. Lawson, J. Perkins and C. J. Urch, J. Chem. Soc.,
Perkin Trans. 2, 2001, 651–669.
25 M. L. Waters, Curr. Opin. Chem. Biol., 2002, 6, 736–741.
26 E. A. Meyer, R. K. Castellano and F. Diederich, Angew. Chem., Int.
Ed., 2003, 42, 1210–1250.
Conclusions
27 M. L. Waters, Biopolymers, 2004, 76, 435–445.
28 F. Cozzi and J. S. Siegel, Pure Appl. Chem., 1995, 67, 683–689.
29 F. Cozzi, R. Annunziata, M. Benaglia, M. Cinquini, L. Raimondi,
K. K. Baldridge and J. S. Siegel, Org. Biomol. Chem., 2003, 1, 157–162.
30 M. J. Rashkin and M. L. Waters, J. Am. Chem. Soc., 2002, 124, 1860–
1861.
31 B. W. Gung, X. Xue and H. J. Reich, J. Org. Chem., 2005, 70, 3641–3644.
32 B. W. Gung, M. Patel and X. Xue, J. Org. Chem., 2005, 70, 10532–10537.
33 M. S. Cubberley and B. L. Iverson, J. Am. Chem. Soc., 2001, 123,
7560–7563.
Aromatic stacking interactions are sensitive to changes in geome-
try and the degree of overlap. Using H-bonded supramolecular
zipper complexes, it has been possible to lock the geometry
of two aromatic rings in an offset stacked arrangement. This
has enabled the effects of substituents on the interaction free
energy to be quantified. The conformational behaviour of the
complexes in the solid state and in solution has been thoroughly
investigated. Some complexes were found to be incompatible with
the double-mutant cycle methodology and were excluded from
the analysis due to significant conformational changes. Insights
obtained from these conformational studies guided the design
and synthesis of new compounds better suited to the approach.
To a first approximation, the electrostatic properties of the ring
surfaces dominate the trends in the interaction energy. However,
direct electrostatic interactions with the ring substituents also
make important contributions. The interplay of these two factors
could lead to complicated behaviour, for example, quite different
interactions between similar aromatic groups in different contexts.
34 L. F. Newcomb and S. H. Gellman, J. Am. Chem. Soc., 1994, 116,
4993–4994.
35 R. R. Gardner, S. L. McKay and S. H. Gellman, Org. Lett., 2000, 2,
2335–2338.
36 S. L. McKay, B. Haptonstall and S. H. Gellman, J. Am. Chem. Soc.,
2001, 123, 1244–1245.
37 X. Mei and C. Wolf, J. Org. Chem., 2005, 70, 2299–2305.
38 M. Gray, A. J. Goodman, J. B. Carroll, K. Bardon, M. Markey, G.
Cooke and V. M. Rotello, Org. Lett., 2004, 6, 385–388.
39 R. Faraoni, M. Blanzat, S. Kubicek, C. Braun, W. B. Schweizer, V.
Gramlich and F. Diederich, Org. Biomol. Chem., 2004, 2, 1962–1964.
40 T. Yajima, R. Takamido, Y. Shimazaki, A. Odani, Y. Nakabayashi and
O. Yamauchi, Dalton Trans., 2007, 299–307.
41 S. L. Cockroft and C. A. Hunter, Chem. Soc. Rev., 2007,
DOI: 10.1039/b603842p.
42 S. M. Butterfield and J. Rebek, J. Am. Chem. Soc., 2006, 128, 15366–
15367.
References
43 H. Adams, F. J. Carver, C. A. Hunter, J. C. Morales and E. M. Seward,
Angew. Chem., Int. Ed. Engl., 1996, 35, 1542–1544.
44 H. Adams, K. D. M. Harris, G. A. Hembury, C. A. Hunter, D.
Livingstone and J. F. McCabe, Chem. Commun., 1996, 2531–2532.
45 F. J. Carver, C. A. Hunter and E. M. Seward, Chem. Commun., 1998,
775–776.
46 H. Adams, P. L. Bernad, Jr., G. A. Hembury, C. A. Hunter, J. F. McCabe,
D. S. Eggleston, R. C. Haltiwanger, D. J. Livingstone, K. D. M. Harris
and B. M. Kariuki, Chem. Commun., 2001, 1500–1501.
47 H. Adams, J.-L. J. Blanco, G. Chessari, C. A. Hunter, C. M. R. Low,
J. M. Sanderson and J. G. Vinter, Chem.–Eur. J., 2001, 7, 3494–3503.
48 F. J. Carver, C. A. Hunter, P. S. Jones, D. J. Livingstone, J. F. McCabe,
E. M. Seward, P. Tiger and S. E. Spey, Chem.–Eur. J., 2001, 7, 4854–
4862.
49 F. J. Carver, C. A. Hunter, D. J. Livingstone, J. F. McCabe and E. M.
Seward, Chem.–Eur. J., 2002, 8, 2847–2859.
50 C. A. Hunter, C. M. R. Low, C. Rotger, J. G. Vinter and C. Zonta, Proc.
Natl. Acad. Sci. U. S. A., 2002, 99, 4873–4876.
51 C. A. Hunter, C. M. R. Low, C. Rotger, J. G. Vinter and C. Zonta,
Chem. Commun., 2003, 834–835.
1 B. R. Hamilton and D. L. Hammick, J. Chem. Soc., 1938, 1350–1352.
2 D. B. Amabilino and J. F. Stoddart, Chem. Rev., 1995, 95, 2725–2829.
3 H. C. Kolb, P. G. Andersson and K. B. Sharpless, J. Am. Chem. Soc.,
1994, 116, 1278–1291.
4 M. Keller, C. Lehmann and M. Mutter, Tetrahedron, 1999, 55, 413–422.
5 B. M. Trost, D. O’Krongly and J. L. Belletire, J. Am. Chem. Soc., 1980,
102, 7595–7596.
6 M. Weck, A. R. Dunn, K. Matsumoto, G. W. Coates, E. B. Lobkovsky
and R. H. Grubbs, Angew. Chem., Int. Ed., 1999, 38, 2741–2745.
7 G. J. Gabriel, S. Sorey and B. L. Iverson, J. Am. Chem. Soc., 2005, 127,
2637–2640.
8 G. J. Gabriel and B. L. Iverson, J. Am. Chem. Soc., 2002, 124, 15174–
15175.
9 K. M. Guckian, B. A. Schweitzer, R. X. F. Ren, C. J. Sheils, D. C.
Tahmassebi and E. T. Kool, J. Am. Chem. Soc., 2000, 122, 2213–2222.
10 W. Saenger, Principles of Nucleic Acid Structure, Spring-Verlag,New
York, 1988.
11 G. B. McGaughey, M. Gagne and A. K. Rappe, J. Biol. Chem., 1998,
273, 15458–15463.
This journal is
The Royal Society of Chemistry 2007
Org. Biomol. Chem., 2007, 5, 1062–1080 | 1079
©