3
initially converted to the corresponding aldehyde, while
benzothiazole gave ring opening product in the presence of
PIDA. Next, the reaction of aminothiophenol with aldehyde
produced imine which was further cyclized followed by
oxidation to give the desired product.
Table 3. Reaction of benzothiazoles with β-nitrostyrenes.a,b
In conclusion, we have developed a novel way for the
synthesis of 2-substituted benzothiazoles using phnyliodonium
diacetate (PIDA) employing benzothiazole and various styrenes
Entry
1
Substrate
Product
Yield (%)
63
o
at 110 C in DMSO and H2O. PIDA can oxidize benzothiazole
and styrenes into 2-aminothiophenol and corresponding
benzaldehydes in situ thus providing a variety of benzothiazoles.
Particularly, this method was carried out without using any
additive or base. This method is significant because it does not
require any transitional metal catalysts, it is reasonably broad in
scope and it is operationally simple. Finally, this method can be
used in the synthesis of biologically active molecules having
benzothiazloe scaffold.
2
3
62
59
Acknowledgments
4
59
62
N.V.S.R and B.P acknowledge CSIR-UGC, New Delhi for the
award of senior research fellowship. We also acknowledge CSIR
for financial support under the 12th Five Year plan project
“Affordable Cancer Therapeutics (ACT)” (CSC0301).
5
a
Conditions: benzothiazole (0.75 mmol), nitrostyrene (0.62 mmol),
PIDA (2.25 mmol), DMSO/H2O = 2:0.5 mL, 110 °C, 14 h. bAll
yields are isolated yields.
References and notes
To elucidate the reaction mechanism, we have conducted
some experiments as shown in Scheme 3. Treatment of
chlorostyrene with PIDA under our standard conditions afforded
the chlorobenzaldehyde in 75% yield. This was further supported
by the reaction of benzothiazole with chlorobenzaldehyde to
yield desired product in 65% yield. The reaction of benzaldehyde
with both benzothiazole and aminothiophenol provided the
desired product in good yield which indicated that this
transformation might proceed via opening of benzothiazole ring.
On this basis and the results of previous literature, a plausible
mechanism was proposed as shown Scheme 4. Styrene was
1. Loaiza Loaiza-Pe ´rez, A. L.; Trapani, V.; Hose, C.; Singh, S. S.;
Trepel, J.; Stevens, M. F. G.; Bradshaw, T. D.; Sausville, E. A.
Mol. Pharmacol. 2002, 61, 13; b) Trapani, V.; Patel, V.; Ciolino,
H. P.; Yeh, G. C.; Hose, C.; Trepel, J. B.; G. Stevens, M. F.;
Sausville, E. A.; Loaiza-Pe´rez, A. L. Br. J. Cancer 2003, 88, 599.
2. Bradshaw, T. D.; Matthews, C. S.; Cookson, J.; Chew, E.-H.;
Shah, M. ; Bailey, K.; Monks, A.; Harris, E.; Westwell, A. D.;
Wells, G.; Laughton, C. A.; Stevens, M. F. G. Cancer Res. 2005,
65, 3911; b) Mukherjee, A.; Bradshaw, T. D.; Westwell, A. D.;
Stevens, M. F. G.; Carmichael, J.; Martin, S. G. Br. J. Cancer
2005, 92, 3058.
3. Bradshaw, T. D.; Westwell, A. D.; Curr. Med. Chem. 2004, 11,
1241.
4. a) Hartley, D.; idd, H.; The Agrochemical Handbook; Royal
Society of Chemistry: Nottingham, 1983. b) Baker, D. R.; Basarab,
G. S.; Fenyes, J. G. Synthesis and Chemistry of Agrochemicals IV;
American Chemical Society: Washington D. C. 1995.
5. Parikh, N.; Kumar, D.; Roy, S. R.; Chakraborti, A. K. Chem.
Commun. 2011, 47, 1797; b) Riadi, Y.; Mamouni, R.; Azzalou, R.;
Haddad, M. E.; Routier, S.; Guillaumet, G.; Lazar, S. Tetrahedron
Lett. 2011, 52, 349; c) Bahrami, K.; Khodaei, M. M.; Naali, F. J.
Org. Chem. 2008, 73, 6835; d) Itoh, T.; Nagata, K.; Ishikawa, H.;
Ohsawa, A. Heterocycles 2004, 63, 2769.
6. Sun, Y.; Jiang, H.; Wu, W.; Zeng, W.; Wu X. Org. Let 2013, 15,
1598.
7. a) Hein, D. W.; Alheim, R. J.; Leavitt, J. J. J. Am. Chem. Soc.
1957, 79, 427.b) Sharghi, H.; Asemani, O. Synth. Commun. 2009,
39, 860; c) Rudrawar, S.; Kondaskar, A.; Chakraborti, A. K.
Synthesis 2005, 15, 2521.
8. Nadaf, R. N.; Siddiqui, S. A.; Thomas, D.; Lahoti, R. J.;
Srinivasan, K. V. J. Mol. Catal. A: Chem. 2004, 214, 155.
9. Song, Q.; Feng, Q.; Zhou, M. Org. Lett. 2013, 15, 5990.
10. a) Shi, D.F.; Bradshaw, T. D.; Wrigley, S.; McCall, C. J.;
Lelieveld, I. F.; Stevens, M. F. G. J. Med. Chem. 1996, 39, 3375;
b) Klunk, W. E.; Mathis, J.; Wang, Y.; PCT Int. Appl., 2004. c)
Hein, D. W.; Alheim, R. J.; Leavitt, J. J. J. Am. Chem. Soc. 1957,
79, 427.
Scheme 3. Detailed reaction study.
11. Hachiya, H.; Hirano, K.; Satoh T.; Miura, M. Angew. Chem., Int.
Ed., 2010, 49, 2202.
12. a) Sezen, B.; Sames, D. Org. Lett. 2003, 5, 3607; b) Chiong, H.;
Daugulis, O. Org. Lett, 2007, 9, 1449; c) Gallagher, W.;
Maleczka, R. J. Org. Chem., 2003, 68, 6775; d) Do, H.; Daugulis,
O. J. Am. Chem. Soc. 2007, 129, 12404; e) Lewis, J.; Berman, A.;
Bergman, R.; Ellman, J. J. Am. Chem. Soc. 2008, 130, 2493; (f)
Canivet, J.; Yamaguchi, J.; Ban, I.; Itami, K. Org. Lett. 2009, 11,
1733; g) Yamamoto, T.; Muto, K.; Komiyama, M.; Canivet, J.;
Yamaguchi, J.; Itami, K.; Chem.–Eur. J., 2011, 17, 10113. h)
Zhao, D.; Wang, W.; Yang, F.; Lan, J.; Yang, L.; Gao, G.; You, J.
Angew. Chem., Int. Ed. 2009, 48, 3296; i) Huang, J.; Chan, J.;
Chen, Y.; Borths, C.; Kyle, K.; Larsen R.; Margaret, M. J. Am.
Chem. Soc. 2010, 132, 3674.
Scheme 4. Possible reaction mechanism.