albeit in 50% maximum theoretical yield, by microbial or
enzymatic resolution of the racemic acids or esters15 or the
well-known resolution of carboxylic acid salts via crystal-
lization with optically active amines. The microbial derace-
mization of the racemic R-aryloxy acids with the potential
of a quantitative yield is known.16 Unfortunately, this
microbial deracemization is sensitive to the nature of the
aryloxy substituent where steric bulk would not allow the
reaction to proceed, and ortho or meta substituents resulted
in unselective reactions.
Scheme 1
As part of an ongoing effort to synthesize key intermedi-
ates for a clinical program, we required rapid access to chiral
R-aryloxy acid derivatives. Homogeneous enantioselective
hydrogenation of prochiral olefins is a powerful technique
for synthesizing a variety of chiral compounds with excellent
enantioselectivity.17 Given the general utility of asymmetric
hydrogenation of unsaturated acids,17 we envisioned the
R-aryloxy R,â-unsaturated acids could potentially provide
directly a broad variety of R-aryloxy acids in high optical
purity. Despite isolated reports on the enantioselective
hydrogenation of benzofuran,18 furan,19 and benzopyran20
carboxylic acids, to the best of our knowledge R-aryloxy
R,â-unsaturated acids represent a new substrate class for
asymmetric hydrogenation.21 Herein we report that asym-
metric hydrogenation of R-aryloxy R,â-unsaturated acids
provides saturated R-aryloxy acids in high optical purity.
Our initial studies focused on R-phenoxybutenoic acid (Z)-
3a,22 which was prepared from the reaction of 2-bro-
mobutenoate 2a23 with phenol 1a followed by hydrolysis of
the methyl ester (Scheme 1). The enantioselective hydroge-
nation of 3a to 4a2,5,8a was examined using a library of
(bisphosphine)ruthenium precatalysts prepared in situ from
[(p-cymene)RuCl2]2 and the commercially available bispho-
sphine ligands.24 The hydrogenation was conducted in the
presence of triethylamine in MeOH. The results of the
catalyst screen are shown in Table 1. We were pleased to
Table 1. Catalyst Screen for Hydrogenationa of 3a to 4a
ligandb
% conversion % eec area % phenol
(S)-Synphos
(S)-P-Phos
(+)-TMBTP
(R)-Cl-MeO-BIPHEP
(S)-BINAPd
100.0
95.4
100.0
100.0
100.0
92.1
97(S)
91(S)
99(R)
92(R)
93(S)
55(S)
48(R)
1(S)
78(R)
89(S)
21(S)
86(R)
0
0.4
2.6
0.0
2.1
0.0
4.4
1.8
0.0
0.7
0.9
0.0
0.0
0.0
(S)-BINAM
(R,S)-PPF-PtBu
(S,S,S,S)-Me-f-KetalPhos
(S)-Binapine
(R,R)-iPr-DUPHOS
(R)-PHANEPHOS
(R,R)-Et-FerroTANE
(S)-Me-BoPhoz
98.6
100.0
100.0
100.0
100.0
100.0
100.0
(13) (a) Zuo, X.; Liu, H.; Guo, G.; Yang, X. Tetrahedron: Asymmetry
1999, 55, 7787-7804. (b) Wandeler, R.; Kunzle, N,; Schneider, M. S.;
Mallat, T.; Baiker, A. J. Chem. Soc., Chem. Commun. 2001, 673-674. (c)
Benincori, T.; Cesarotti, E.; Piccolo, O.; Sannicolo, F. J. Org. Chem. 2000,
65, 2043-2047.
a Solution containing 4 mg/mL of 3a, 1.05 equiv of Et3N, 11.5 mol %
ligand, and 5.75 mol % [(p-cymene)RuCl2]2 in a mixture of 80:13:7 by
volume MeOH/EtOH/CH2Cl2 was hydrogenated at 20-25 °C under 90 psig
hydrogen for 20 h. The reaction mixtures were directly assayed by HPLC
for % conversion and % ee. b See Supporting Information for ligand
structures. c Absolute configuration25 in parentheses. d Performed with 20
mol % [(S)-BINAP]RuCl2.
(14) For a recent example employing a Mitsunobu coupling of a phenol
with a chiral 2-hydroxyamide see ref 8b.
(15) (a) Massolini, G.; Calleri, E.; Lavecchia, A.; Loiodice, F.; Lubda,
D.; Temporini, C.; Fracchiolla, G.; Tortorella, P.; Novellino, E.; Caccialanza,
G. Anal. Chem. 2003, 75, 535-542. (b) Colton, I. J.; Ahmed, S. N.;
Kazlauskas, R. J. J. Org. Chem. 1995, 60, 212-217.
(16) Kato, D.-I.; Mitsuda, S.; Ohta, H. J. Org. Chem. 2003, 68, 7234-
7242.
(17) (a) Ohkuma, T.; Kitamura, M.; Noyori, R. In Catalytic Asymmetric
Synyhesis; Ojima, I., Ed.; Wiley-VCH: New York, 2000. (b) Noyori, R.
Asymmetric Catalysis in Organic Synthesis; Wiley: New York, 1994.
(18) (a) Maris, M.; Huck, W.-R.; Mallat, T.; Baiker, A. J. Catal. 2003,
52-58.
find high conversions and >90% ee for a number of ligands.
In most cases, the chemical selectivity was high with the
only by-product being low levels of phenol. It is noteworthy
that the sense of enantioinduction observed in the hydroge-
nation of 3a ((S)-4a25 with (S)-BINAP) was the same as that
observed with simple 2-alkyl and 2-arylacrylates.17
Among all the ligands tested, the atropisomeric bisphos-
phines, BINAP, Synphos, P-Phos, Cl-MeO-BIPHEP, and
TMBTP, provided the highest enantioselectivities, consistent
with literature precedent.17 Of this series BINAP is by far
(19) Studer, M.; Wedemeyer-Exl, C.; Spindler, F.; Blaser, H.-U. Monatsh.
Chem. 2000, 131, 1335-1343.
(20) Kurano, M.; Kondo, Y.; Miura, K.; Usui, T.; Unno, R.; Kakigami,
T.; Sawai, K. U.S. Patent 5171865, 1992.
(21) R-Acyloxyacrylates, which contain a chelating acyl group, have been
enantioselectively hydrogenated using rhodium catalysts. (a) Lotz, M.;
Polborn, K.; Knochel, P. Angew. Chem. 2002, 114, 4902-4905. (b) Lotz,
M.; Ireland, T.; Perea, J. J. A.; Knochel, P. Tetrahedron: Asymmetry 1999,
10, 1839-1842. (c) Burk, M. J.; Kalberg, C. S.; Pizzano, A. J. Am. Chem.
Soc. 1998, 120, 4345-4353. (d) Schmidt, U.; Langner, J.; Kirschbaum,
B.; Braun, C. Synthesis 1994, 1138-1140. The enantioselective hydrogena-
tion of aryl enol ethers is known. (e) Ohta, T.; Miyake, T.; Seido, N.;
Kumobayashi, H.; Takaya, H. J. Org. Chem. 1995, 60, 357-363.
(22) (a) Rosnati, V.; Saba, A.; Salimbeni, A. Tetrahedron Lett. 1981,
22, 167-168. (b) Padmanathan, T.; Sultanbawa, M. U. S. J. Chem. Soc.
1963, 4210-4218. X-ray crystallographic data for unsaturated acids 3e and
3f show the stereochemistry of the olefin to be the (Z)-configuration.
(23) Prostenik, M.; Salzman, N. P.; Carter, H. E. J. Am. Chem. Soc.
1955, 77, 1856.
(24) Mashima, K.; Kusano, K.; Sato, N.; Matsumura, Y.; Nozaki, K.;
Kumobayashi, H.; Sayo, N.; Hori, Y.; Ishizaki, T.; Akutagawa, S.; Takaya,
H. J. Org. Chem. 1994, 59, 3064-3076.
(25) (a) Smeets, J. W. H.; Kieboom, A. P. C. Recl. Trac Chim. Pays-
Bas 1992, 111, 490-495. (b) Tsuda, Y.; Kawai, K.-I.; Nakajima, S. Chem.
Pharm. Bull. 1985, 33, 1955-1960. (c) Piekarski, S. Bull. Soc. Chim. Fr.
1959, 441-445. (d) Matell, M. Ark. Kemi. 1953, 6, 251-255.
3148
Org. Lett., Vol. 6, No. 18, 2004