S. Fortin et al. / Bioorg. Med. Chem. Lett. 17 (2007) 2000–2004
Table 2. Cell cycle evaluation of M21 cells treated with 1a, b, 2a, b, 3a,
b, 10, and CA-4
2003
References and notes
1. Rowinsky, E. K.; Donehower, R. C. Pharmacol. Ther.
1991, 52, 35.
Compound Concn (lM)
Apoptotic cells and cell cycle
phase (% of population)
2. Checchi, P. M.; Nettles, J. H.; Zhou, J.; Snyder, J. P.;
Joshi, H. C. Trends Pharmacol. Sci. 2003, 24, 361.
3. Pinedo, H. M.; Giaccone, G. Drug Resistance in the
Treatment of Cancer; Cambridge University Press: Cam-
bridge, UK, 1998, pp 199–208.
Apoptosis G1
S
G2/M
1a
24
80
8.3
5.3
4.5
37.2 16.6 22.5
38.1 18.7 21.3
40.3 19.0 19.6
200
4. Nam, N. H. Curr. Med. Chem. 2003, 10, 1697.
5. Liou, J. P.; Chang, J. Y.; Chang, C. W.; Mahindroo, F. M.
K.; Hsieh, H. P. J. Med. Chem. 2004, 47, 2897.
6. Pettit, G. R.; Rhodes, M. R. Anti-Cancer Drug Des. 1998,
13, 183.
2a
24
80
12.5
18.7
6.9
23.8 20.7 27.5
15.2 16.4 34.9
13.5 15.7 42.6
200
3a
24
80
44.8
15.0
21.7
22.1 12.3 12.5
18.4 16.4 35.5
14.7 10.5 41.3
7. Pettit, G. R.; Lippert, J. W. Anti-Cancer Drug Des. 2000,
15, 203.
200
8. Oshumi, K.; Nakagawa, R.; Fukuda, Y.; Hatanaka, T.;
Tsuji, T. J. Med. Chem. 1998, 41, 3022.
9. Pettit, G. R.; Toki, B.; Hamel, E.; Pettit, R. K. J. Med.
Chem. 1998, 41, 1688.
1b
24
80
9.9
5.5
38.1 12.9 19.5
38.8 15.6 21.0
37.4 21.9 12.4
200
11.9
10. Hsieh, H. P.; Liou, J. P.; Mahidroo, N. Curr. Pharm. Des.
2005, 11, 1655.
11. Nguyen, T. L.; McGrath, C.; Hermone, A. R.; Burnett, J.
C.; Zaharevitz, D. W.; Day, B. W.; Wipf, P.; Hamel, E.;
Gussio, R. J. Med. Chem. 2005, 48, 6107.
12. Tron, G. C.; Pirali, T.; Sorba, G.; Pagliai, F.; Busacca, S.;
Genazzani, A. A. J. Med. Chem. 2006, 49, 3033.
13. Legault, J.; Gaulin, J. F.; Mounetou, E.; Bolduc, S.;
Lacroix, J.; Poyet, P.; C-Gaudreault, R. Cancer Res. 2000,
60, 985.
14. Bouchon, B.; Chambon, C.; Mounetou, E.; Papon, J.;
Miot-Noirault, E.; C-Gaudreault, R.; Madelmont, J. C.;
Degoul, F. Mol. Pharmacol. 2005, 68, 1415.
2b
24
80
2.8
2.3
2.6
37.8
9.9 30.2
15.5 13.4 45.1
7.2 16.3 47.9
200
3b
6
21
53
10.7
17.6
9.7
11.4 15.8 43.3
6.8 9.7 47.2
8.1 12.5 48.0
CA-4
DMSO
0.015
0.050
0.125
10.7
15.8
11.6
9.4 15.0 46.4
10.1 14.6 40.6
8.2 14.7 45.4
2.6
45.8 19.4 17.6
15. Carvalho, A. T.; Fernandes, P. A.; Ramos, M. J. J. Phys.
Chem. B Condens. Matter Mater. Surf. Interfaces Biophys.
2006, 110, 5758.
16. Feher, M.; Schmidt, J. M. J. Chem. Inf. Comput. Sci. 2000,
40, 495.
17. Moreau, E.; Fortin, S.; Desjardins, M.; Rousseau, J. L.; L,
E.; C-Gaudreault, R. Bioorg. Med. Chem. 2005, 13, 6703.
18. Fortin, S.; Moreau, E.; Patenaude, A.; Desjardins, M.;
Lacroix, J.; Rousseau, J. L.; C-Gaudreault, R. Bioorg.
Med. Chem. 2007, 15, 1430.
the colchicine-binding site. This might be related to
the fact that the rate constant for dissociation of com-
bretastatin (4.8 · 10ꢀ3 sꢀ1
)
is significantly lower that
8
for colchicine, which is essentially irreversible.30 As
expected, vinblastine did not compete either with com-
pounds 2a, 3a, 3b; vinblastine binding to tubulin using
a different binding site.
In summary, we have shown that new CA-4-CEU hy-
brid derivatives are cytotoxic on tumor cells through
their nucleophilic covalent binding to b-tubulin in the
colchicine-binding site. These CA-4-CEU antimitotic
agents that arrest the cell cycle in G2/M phase might
be an alternative to the TMP ring such as an atypic-
CSI. We therefore conclude that other structural bridges
between the two aromatic rings might be investigated
such as sulfonamides, sulfonates, amine or amide deriv-
atives, cyclic or heterocyclic moiety. These results of fur-
ther optimized biological activities of CA-4-CEU hybrid
derivatives will be reported in due course.
19. Maya, A. B. S.; Perez-Melero, C.; Mateo, C.; Alonso, D.;
Fernandez, J. L.; Gajate, C.; Moliinedo, F.; Pelaez, R.;
Cabellero, E.; Medarde, M. J. Med. Chem. 2005, 48, 556.
20. Gorsane, M.; Defay, N.; Martin, R. H. Bull. Soc. Chim.
Belg. 1985, 94, 215.
21. Nonoyama, N.; Oshima, H.; Shoda, C.; Suzuki, H. Bull.
Soc. Chim. Belg. 2001, 74, 2385.
22. Pettit, G. R.; Singh, S. B.; Cragg, G. M. J. Org. Chem.
1985, 50, 3404.
23. Cushman, M.; Nagarathnam, D.; Gopal, D.; Chakraborti,
A. K.; Lin, C. M.; Hamel, E. J. Med. Chem. 1991, 34,
2579.
24. (E)-1-(2-Chloroethyl)-3-(3-(3-hydroxy-4-methoxystyryl)-
phenyl)urea (1a): mp 191–193 ꢁC; 1H NMR (200MHz,
DMSO-d6) d 9.02 (s, 1H), 8.67 (s, 1H), 7.59 (s, 1H), 7.06 (m,
7H), 6.42 (s, 1H), 3.80 (s, 3H), 3.68 (t, 2H, J = 6.0 Hz), 3.45
(m, 2H); 13C NMR (50 MHz, DMSO-d6) d: 155.1, 146.7,
140.6, 137.8, 130.1, 129.0, 128.3, 126.3, 119.0, 119.5, 118.5,
116.9, 115.5, 113.0, 112.3, 55.7, 44.4, 41.3. ESIMS (m/z)
371.2 [M+2+Na]+, 369.2 [M+Na]+, 349.2 [M+3]+, 347.2
[M+1]+, 346.1 [M]+.31 (E)-1-(2-Chloroethyl)-3-(4-(3-hy-
droxy-4-methoxystyryl)phenyl)urea (1b): mp 208–210 ꢁC;
1H NMR (200 MHz, DMSO-d6) d 8.14 (s, 1H), 7.46 (m,
4H), 7.10 (s, 1H), 6.96 (m, 4H), 6.13 (s, 1H), 3.85 (s, 3H), 3.69
(t, 2H, J = 6.0 Hz), 3.67 (m, 2H); 13C NMR (50 MHz,
DMSO-d6) d: 155.7, 148.0, 147.5, 140.5, 132.2, 127.4, 127.1,
Acknowledgments
This work was supported by a grant from the Canadian
Health Research Institute (RCG, Grant #MOP-79334)
and a scholarship from the Faculty of Pharmacy, Uni-
´
versite Laval (SF). The authors thank Dr. Lakshmi P.
Kotra for molecular modeling experiments, Dr. Philippe
Labrie for advice for the preparation of the drugs, and
Dr. Jean L. C. Rousseau for critical review of this
manuscript.